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Abstract

For an oriented graph D and a set X ⊆ V (D), the inversion of X in D is the graph
obtained from D by reversing the orientation of each edge that has both endpoints in X.
Define the inversion number of D, denoted inv(D), to be the minimum number of inversions
required to obtain an acyclic oriented graph from D. The dijoin, denoted D1 → D2, of two
oriented graphs D1 and D2 is constructed by taking vertex-disjoint copies of D1 and D2 and
adding all edges from D1 to D2. We show that inv(D1 → D2) > inv(D1), for any oriented
graphs D1 and D2 such that inv(D1) = inv(D2) ≥ 1. This resolves a question of Aubian,
Havet, Hörsch, Klingelhoefer, Nisse, Rambaud and Vermande. Our proof proceeds via a
natural connection between the graph inversion number and the subgraph complementation
number.
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1 Introduction

Given an oriented graph D and a set X ⊆ V (D), the inversion of X in D is the oriented graph
obtained from D by reversing the orientation of each edge that has both endpoints in X. In this
case, we say that we invert X in D. Given a family of sets X1, ..., Xk ⊆ V (D), the inversion of
X1, ..., Xk in D is the oriented graph obtained by inverting each set in turn: inverting X1 in D,
then X2 in the resulting oriented graph, and so on. Note that the order in which we perform
these inversions does not impact the final oriented graph.

If inverting X1, ..., Xk in D produces an acyclic oriented graph, then these sets form a decycling
family of D. The inversion number was introduced by Belkechine [4] and early results on the
topic were obtained by Belkechine, Bouaziz, Boudabbous and Pouzet [5].

Given oriented graphs D1 and D2, the dijoin from D1 to D2, denoted by D1 → D2 is the
oriented graph constructed from vertex-disjoint copies ofD1 andD2 by adding all edges uv where
u ∈ V (D1) and v ∈ V (D2). Bang-Jensen, Costa Ferreira da Silva and Havet [3] observed that if
D1 and D2 are oriented graphs then inv(D1 → D2) ≤ inv(D1) + inv(D2), and conjectured that
equality holds for all D1, D2. They proved that the conjecture holds if inv(D1) = inv(D2) = 1.
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However, this conjecture was shown to be false by two simultaneous papers [1, 2]. The authors
of [2] provide a whole family of counterexamples, showing that for every odd k ≥ 3 there is a
tournament D1 with inv(D1) = k such that for any oriented graph D2 with inv(D2) ≥ 1, we
have inv(D1 → D2) ≤ inv(D1) + inv(D2) − 1. Thus the trivial upper bound on the inversion
number of a dijoin is not always tight.

For a trivial lower bound, it is easy to see that inv(D1 → D2) ≥ max{inv(D1), inv(D2)}. As
a first step towards investigating the tightness of this lower bound, Aubian, Havet, Hörsch,
Klingelhoefer, Nisse, Rambaud and Vermande asked the following question.
Question 1.1 ([2, Problem 5.5]). Does there exist a non-acyclic oriented graph D such that

inv(D → D) = inv(D)?

We answer this question in the negative. In fact, we prove the following slightly more general
result.
Theorem 1.2. Let D1 and D2 be oriented graphs such that inv(D1) = inv(D2) ≥ 1. Then
inv(D1 → D2) > inv(D1).

In order to prove this theorem, we use a natural connection between the subgraph complemen-
tation number, as studied by Buchanan, Purcell and Rombach in [6], and the inversion number,
which we believe may be useful in future research on this topic. This allows us to deduce that
the inversion number of a digraph D is either tmr(D) or tmr(D) + 1, where tmr(D) is the
minimum rank across a family of matrices (see Section 3). The same connection is made in [7],
however (by using the results in [6]) we are able to classify when inv(D) = tmr(D) + 1, which
is a vital ingredient in our proof. We discuss this further in Section 3, after first noting some
easy observations in Section 2. We prove Theorem 1.2 in Section 4. Some open problems and
conjectures are given in Section 5.

2 Preliminaries

In this section, we recall some definitions and notation pertaining to oriented graphs, and
present some basic results on the inversion number of oriented graphs which will be useful in
later sections.

Recall that an oriented graph is a pair D = (V,E), where V is a collection of vertices and
E ⊆ V (2) is a collection of ordered pairs of distinct vertices such that, for any u, v ∈ V at most
one of uv and vu is in E. For u, v ∈ V , we write uv to denote the edge oriented (or directed) from
u to v. An oriented graph can be viewed as the result of assigning a direction to, or orienting,
each edge of a suitable simple graph. A tournament is an oriented graph where exactly one of
uv and vu is present for all u ̸= v ∈ V , i.e. an orientation of a complete graph. An oriented
graph D1 is a subgraph of D2, denoted D1 ⊆ D2, if V (D1) ⊆ V (D2) and E(D1) ⊆ E(D2).

The out-neighbourhood of a vertex v, denoted N+(v), is the set of all vertices u ∈ V such that
vu ∈ E. The in-neighbourhood of v, denoted N−(v), is the set of all vertices u ∈ V such that
uv ∈ E. A vertex v is a source if N−(v) is empty, and v is a sink if N+(v) is empty.

We first make the simple observation that removing vertices and edges from an oriented graph
cannot increase the inversion number. Indeed, after removing the same vertices and edges from
a decycling family of the initial oriented graph, it is a decycling family of the subgraph.
Observation 2.1. Let D1 and D2 be tournaments and suppose that D1 ⊆ D2. Then inv(D1) ≤
inv(D2).
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The following result can help to reduce a problem about oriented graphs to a problem about
tournaments only.
Proposition 2.2. For every oriented graph D, there is a tournament D∗ on the same vertex
set with D ⊆ D∗ and inv(D∗) = inv(D).

Proof. Let k := inv(D). Let U be the acyclic oriented graph that is reached from D after
applying a decycling family X1, X2, . . . , Xk. There exists a transitive tournament U∗ on the
same vertex set with U ⊆ U∗. Inverting the sets X1, X2, . . . , Xk in U∗ gives a tournament D∗

with D ⊆ D∗. Clearly inv(D∗) ≤ k and so by Observation 2.1, inv(D∗) = k.

We will also use the following simple results that consider the effect that the removal of a single
vertex has on the inversion number of an oriented graph.
Proposition 2.3. Let D be an oriented graph on n ≥ 2 vertices. If v ∈ V (D) is a sink or a
source, then inv(D − v) = inv(D).

Proof. By Observation 2.1, inv(D− v) ≤ inv(D). Now, since v is a sink or a source, a decycling
family of D − v is also a decycling family of D. Hence, inv(D − v) ≥ inv(D).

Given an oriented graph D, we say that u, v ∈ V (D) are twin vertices if N+(u) \ {v} =
N+(v) \ {u} and N−(u) \ {v} = N−(v) \ {u}.
Proposition 2.4. Let D be an oriented graph on n ≥ 2 vertices. If u, v ∈ V (D) are twin
vertices, then inv(D − v) = inv(D).

Proof. By Observation 2.1, inv(D− v) ≤ inv(D). Now, suppose X1, ..., Xk is a decycling family
of D− v. For 1 ≤ i ≤ k, let Yi = Xi if u /∈ Xi, and Yi = Xi ∪ {v} if u ∈ Xi. Then Y1, ..., Yk is a
decycling family of D, and inv(D − v) ≥ inv(D).

Finally, we have the following trivial upper bound on the inversion number of an oriented graph.
Proposition 2.5. For an oriented graph D of order n ≥ 1, we have inv(D) ≤ n− 1.

Proof. Note that the inversion number of an oriented graph on one vertex is clearly zero, and
assume the statement of the proposition is true for oriented graphs of order n − 1. Let v
be a vertex in D, and let X = N+(v) ∪ {v}. Inverting X in D, gives an oriented graph
D′ in which v is a sink. Hence, using Proposition 2.3, inv(D′) = inv(D′ − v) ≤ n − 2, and
inv(D) ≤ inv(D′) + 1 ≤ n− 1.

3 Subgraph complementation and tournament minimum rank

In this section, we discuss a natural connection between the subgraph complementation number,
as studied in [6], and the inversion number. Importantly, we will show that the inversion number
is closely related to the lowest rank of a matrix from a particular set of matrices, a key step in
our proof of Theorem 1.2.

3.1 Background on subgraph complementation

In order to state the results of Buchanan, Purcell and Rombach [6], we first require the following
definitions.

Given an (undirected) graph G of order n ≥ 1 and a set X ⊆ V (G), the subgraph complementa-
tion of X in G is the graph obtained from G by complementing the edges in G[X]. In this case,
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we say that we complement X in G. Given a family of sets X1, ..., Xk ⊆ V (G), the subgraph
complementation of X1, ..., Xk in G is the graph obtained by complementing each set in turn:
complementing X1 in G, then X2 in the resulting graph, and so on. Note that the order in
which we perform these subgraph complementations does not impact the final graph.

If complementing X1, ..., Xk in G results in the empty graph Kn, then these sets form a subgraph
complementing system of G. The subgraph complementation number of G, denoted by c2(G), is
the minimum number of sets in a subgraph complementing system of G.

Note that F is a subgraph complementing system of G if and only if each pair of adjacent vertices
appears together in an odd number of sets in F , while each pair of non-adjacent vertices appears
together in an even number of sets in F .

Let M(G) be the collection of all n × n matrices with entries in {0, 1} that can be obtained
from the adjacency matrix1 of G by altering diagonal entries. In this paper the rank of a matrix
is always taken over F2 and we will refer to the rank of a matrix taken over F2 as simply the
rank. Define the minimum rank of a graph G, denoted by mr(G), to be the minimum rank of
a matrix in M(G).

Buchanan, Purcell, and Rombach [6] showed that the quantities mr(G) and c2(G) cannot differ
by more than 1. In addition, they characterised the graphs for which they differ.
Lemma 3.1 ([6] Corollary 4.7 and Theorem 4.12). Let G be a graph. Then either

1. c2(G) = mr(G), or

2. c2(G) = mr(G) + 1, in which case mr(G) is even.

Moreover, if G has at least one edge, then c2(G) = mr(G) + 1 if and only if there is a unique
matrix M ∈ M(G) of minimum rank and all of the diagonal entries of this matrix are equal to
zero.

Although it will not be directly relevant for our application of the result, the interested reader
might like to know that the proof of Lemma 3.1 uses an equivalent form of the problem. A
d-dimensional faithful orthogonal representation of a graph G over the field F2 is a function ϕ :
V (G) → Fd

2 where non-adjacent vertices are assigned orthogonal vectors; that is, ϕ(u) ·ϕ(v) = 0
for all uv /∈ E(G), and adjacent vertices are assigned non-orthogonal vectors; that is, ϕ(u) ·
ϕ(v) = 1. The d-dimensional faithful orthogonal representations of G over F2 are in bijective
correspondence with the subgraph complementation systems of G, where a representation ϕ
corresponds to the system {X1, ..., Xd} with v ∈ V (G) included in Xi if and only if the ith
entry of ϕ(v) is 1. This approach bears a strong similarity to the analysis used in [2] to prove
that for every odd k ≥ 3 there is a tournament D1 with inv(D1) = k such that for any oriented
graph D2 with inv(D2) ≥ 1, we have inv(D1 → D2) ≤ inv(D1) + inv(D2)− 1.

3.2 Tournament minimum rank

Let D be a tournament on n vertices and T a transitive tournament on the same vertex set.
Define GD,T to be the (undirected) graph on the same vertex set as D with the edge ij present
if and only if the edge between vertices i and j has opposite orientations in D and T . Clearly, a
series of inversions that takes D to T corresponds exactly to a subgraph complementing system
of GD,T .

1Recall that the adjacency matrix of G, denoted A(G), is the n × n matrix such that Ai,j = 1 whenever
ij ∈ E(G) and 0 otherwise (including on the diagonal).
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Let T be the collection of all (labelled) n-vertex transitive tournaments and define

M∗(D) =
⋃
T∈T

M(GD,T ).

Define the tournament minimum rank of a tournament D, denoted tmr(D), as:

tmr(D) := min{rank(M) : M ∈ M∗(D)}.

Equivalently, tmr(D) = minT∈T mr(GD,T ).

The following result is a direct consequence of Lemma 3.1 and provides a useful relationship
between inv(D) and tmr(D).
Corollary 3.2 (Corollary to Lemma 3.1). Let D be a tournament. Then either

1. inv(D) = tmr(D), or

2. inv(D) = tmr(D) + 1, in which case tmr(D) is even.

Moreover, if D is not transitive, then inv(D) = tmr(D) + 1 if and only if every matrix M ∈
M∗(D) with minimum rank has every diagonal entry equal to zero.

Proof. Let T be an n-vertex transitive tournament. If transforming D into T requires ℓ inver-
sions, then c2(GD,T ) = ℓ. So, by the definition of the inversion number,

inv(D) = min
T∈T

c2(GD,T ).

By Lemma 3.1, we have that mr(GD,T ) ≤ c2(GD,T ) ≤ mr(GD,T ) + 1, and so

tmr(D) = min
T∈T

mr(GD,T ) ≤ min
T∈T

c2(GD,T ) ≤ min
T∈T

mr(GD,T ) + 1 = tmr(D) + 1.

Furthermore, the equality inv(D) = tmr(D)+1 holds if and only if c2(GD,T ) = mr(GD,T )+1 for
every T ∈ T with mr(GD,T ) = tmr(D). This immediately implies that, if inv(D) = tmr(D)+1,
then tmr(D) must be even.

Moreover, if D is not transitive, then GD,T contains at least one edge for any T ∈ T and
Lemma 3.1 tells us that, if c2(GD,T ) = mr(GD,T )+1, then there is a unique matrix of minimum
rank in M(GD,T ) and it has all zeroes on the diagonal. Hence, if inv(D) = tmr(D) + 1, this
is true of every T with mr(GD,T ) = tmr(D) and every matrix in M∗(D) of minimum rank has
zeros on the diagonal.

It is interesting to note that all of the examples in [1,2] of pairs of graphs D1, D2 with inv(D1 →
D2) < inv(D1) + inv(D2) have that Di is a tournament with inv(Di) = tmr(Di) + 1 for at least
one i. In fact, the following result holds.
Theorem 3.3. Let D1 be a tournament with inv(D1) = tmr(D1)+1, and let D2 be any oriented
graph with inv(D2) ≥ 1. Then inv(D1 → D2) ≤ inv(D1) + inv(D2)− 1.

This can be proved using a similar argument to that used in [2]. Alternatively, we can directly
apply Corollary 3.2, as follows.

Proof. Let D1 be a tournament satisfying inv(D1) = tmr(D1) + 1. Applying Proposition 2.2,
let D∗

2 be a tournament containing D2 with inv(D∗
2) = inv(D2). We see that

inv(D1 → D2) ≤ inv(D1 → D∗
2) ≤ tmr(D1 → D∗

2) + 1

≤ tmr(D1) + tmr(D∗
2) + 1

≤ inv(D1) + inv(D∗
2) = inv(D1) + inv(D2).
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Suppose for a contradiction that we have equality. Then

inv(D1 → D∗
2) = tmr(D1 → D∗

2) + 1, (1)

tmr(D1 → D∗
2) = tmr(D1) + tmr(D∗

2), and (2)

inv(D∗
2) = tmr(D∗

2). (3)

Using (3) and inv(D∗
2) ≥ 1 (so D∗

2 is not transitive), Corollary 3.2 tells us that there is some
minimum rank matrix M2 ∈ M∗(D∗

2) with a non-zero diagonal entry. Then, letting M1 be a
minimum rank matrix in M∗(D1), the matrix[

M1 0
0 M2

]
is a matrix inM∗(D1 → D∗

2) with a non-zero entry on the diagonal and rank tmr(D1)+tmr(D∗
2),

which is equal to tmr(D1 → D∗
2) by (2). Applying Corollary 3.2 again, this implies that

inv(D1 → D∗
2) = tmr(D1 → D∗

2), contradicting (1).

4 Proof of Theorem 1.2

In Problem 5.5 of [2], Aubian, Havet, Hörsch, Klingelhoefer, Nisse, Rambaud, and Vermande
ask whether there exists a non-acyclic oriented graph D such that inv(D → D) = inv(D). The
goal of this section is to prove Theorem 1.2, and answer this question in the negative. We
restate it below for convenience.
Theorem 1.2. Let D1 and D2 be oriented graphs such that inv(D1) = inv(D2) ≥ 1. Then
inv(D1 → D2) > inv(D1).

In fact, we may focus our attention exclusively on the tournament case.
Lemma 4.1. Let D1 and D2 be tournaments such that inv(D1) = inv(D2) ≥ 1. Then
inv(D1 → D2) > inv(D1).

Before we prove Lemma 4.1, we demonstrate why this suffices to prove Theorem 1.2.

Proof of Theorem 1.2. Suppose for a contradiction that there exist oriented graphs D1, D2 with
inv(D1) = inv(D2) = inv(D1 → D2). Let k := inv(D1).

Apply Proposition 2.2 to obtain a tournament (D1 → D2)
∗ with (D1 → D2) ⊆ (D1 → D2)

∗ and

inv((D1 → D2)
∗) = inv(D1 → D2) = k.

Since (D1 → D2)
∗ contains every edge of D1 → D2, it is the dijoin of two tournaments E1 and

E2, where E1 ⊇ D1 and E2 ⊇ D2. By Observation 2.1, both E1 and E2 have inversion number
at least k. Hence

k = inv((D1 → D2)
∗) = inv(E1 → E2) ≥ inv(E1) ≥ k

and
k = inv((D1 → D2)

∗) = inv(E1 → E2) ≥ inv(E2) ≥ k.

Therefore, we have two tournaments E1, E2 with inv(E1) = k = inv(E2) = inv(E1 → E2),
contradicting Lemma 4.1.
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In order to prove Lemma 4.1, we will require the following lemma about the structure of certain
symmetric matrices. Call an n×m matrix with entries in {0, 1} a staircase matrix if its entries
increase down each column and decrease along each row (so that the 1s form the shape of a
staircase in the bottom left).
Lemma 4.2. Let M be a symmetric (n+m)× (n+m) matrix with entries in {0, 1} of the form[

A C
CT B

]
where A is a symmetric n × n matrix, B is a symmetric m × m matrix and C is an n × m
staircase matrix. If m ≥ rank(A) + 1, then one of the following holds:

1. rank(M) ≥ rank(A) + 1, or

2. there are two adjacent columns of B which are identical, or

3. the final column of B contains only zeroes.

Proof. Suppose that M is a matrix of the given form. Clearly rank(M) ≥ rank(A), so suppose
that rank(M) = rank(A) = k. It must therefore be possible to write each row of B as a linear
combination of rows of C over F2.

Since rank(M) = k, it follows that the staircase C must contain at most k distinct non-zero
columns (‘steps’). Since m ≥ k+1, this means that either C contains two consecutive columns
with the same entries or C contains a zero column. We split into two cases.

Case 1. Suppose that C contains two adjacent columns with the same entries, say column i
and i+1. Since each row of B can be written as a linear combination of rows of C over F2, this
implies that columns i and i+ 1 of B must also contain the same entries.

Case 2. Suppose that C contains a zero column. Since C is a staircase matrix, the final column
of C must be a zero column. Since each row of B can be written as a linear combination of
rows of C, this implies that the final column of B also contains only zeroes.

We are now armed with all the tools necessary to prove Lemma 4.1.

Proof of Lemma 4.1. Suppose for a contradiction that there exist non-transitive tournaments
D1 and D2 with inv(D1) = inv(D2) = inv(D1 → D2). Take D1, D2 to be tournaments with this
property such that |V (D1)|+ |V (D2)| is minimal, and let n1 := |V (D1)| and n2 := |V (D2)|. Let
n := n1 + n2 and k := inv(D1). Note that Proposition 2.5 tells us that k + 1 ≤ n1, n2.

Our goal is to show that every minimum rank matrix in M∗(D1 → D2) has rank k and only zero
entries on the diagonal. Then, by Corollary 3.2, we are able to conclude that inv(D1 → D2) =
k + 1 to obtain a contradiction.

Suppose that M is a matrix of minimum rank in M∗(D1 → D2), where M ∈ M(GD1→D2,T )
for some transitive tournament T . Note that T naturally induces an order ≺ on its vertices,
with the source as the first vertex and the sink as the last vertex. We fix a different ordering
ϕ : V (T ) → [n] of the vertices of T (and thus of D1 → D2), which is obtained by first taking all
vertices in the copy of D1 in the order induced by the natural ordering on T , and then taking
all vertices in the copy of D2 in the order induced by T . That is, ϕ(u) < ϕ(v) if and only if
either u ∈ V (D1) and v ∈ V (D2), or u, v ∈ V (D1) and u ≺ v, or u, v ∈ V (D2) and u ≺ v.
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Note that permuting both the rows and the columns of M by a given permutation does not
change the rank of M or the diagonal entries. Therefore, we may, and will, assume that our
matrix M has rows and columns ordered according to the vertex ordering ϕ.

Now, since M has minimum rank, by Corollary 3.2, rank(M) ∈ {k − 1, k}. Moreover, by our
choice of vertex order, M has the form [

A C
CT B

]
(4)

where A is an n1×n1 symmetric matrix, B is an n2×n2 symmetric matrix and C is an n1×n2

staircase matrix. To see that C is indeed a staircase matrix, consider a 1 in C, and suppose it
corresponds to the edge uv where u ∈ V (D1) and v ∈ V (D2). Since this entry, which we denote
Cu,v, is a 1, we have v ≺ u. An entry Cu,v′ to the left of Cu,v corresponds to an edge between
u and some vertex v′ ∈ V (D2) with v′ ≺ v. Hence, v′ ≺ v ≺ u and the entry Cu,v′ must also be
a 1. Similarly an entry below Cu,v corresponds to the edge between v and some vertex u′ with
u ≺ u′, it must also be a 1 as we have v ≺ u ≺ u′.

Clearly rank(A) ≤ rank(M) ≤ k. Since A ∈ M∗(D1), by Corollary 3.2,

rank(A) ≥ tmr(D1) ≥ inv(D1)− 1 = k − 1.

The corresponding inequalities also hold for B, and thus rank(A), rank(B) ∈ {k − 1, k}.

Claim 1. rank(A) = rank(B) = k − 1 and rank(M) = k.

Proof. First suppose, in order to obtain a contradiction, that rank(A) = rank(M). Since
n2 ≥ k + 1 ≥ rank(A) + 1, by Lemma 4.2 we can immediately deduce that either there are two
adjacent columns of B that have the same entries, or the final column of B contains only zeroes.

Suppose there are two adjacent columns of B with the same entries, and let these correspond
to the vertices u and v. Let i = ϕ(u) and note that ϕ(v) = i + 1. By definition of ϕ, a
vertex w ∈ D2 is in N+(u) if and only if either ϕ(w) < i and Bϕ(w),i = 1, or ϕ(w) > i and
Bϕ(w),i = 0. Similarly, a vertex w ∈ D2 is in N+(v) if and only if either ϕ(w) < i + 1 and
Bϕ(w),i+1 = 1, or ϕ(w) > i + 1 and Bϕ(w),i+1 = 0. Since Bj,i = Bj,i+1 for all j, we see that
N+(u) \ {v} = N+(v) \ {u}. In particular, u and v are twin vertices in D2. Let D′

2 = D2 − u.
By Proposition 2.4, inv(D′

2) = inv(D2).

Otherwise, suppose that the final column of B is all zeros. This means that the vertex u with
ϕ(u) = n is a sink in D2. Let D

′
2 = D2 − u. By Proposition 2.3, inv(D′

2) = inv(D2).

In either case, by Observation 2.1,

k = inv(D2) = inv(D′
2) ≤ inv(D1 → D′

2) ≤ inv(D1 → D2) = k.

In particular, inv(D′
2) = inv(D1 → D′

2) = k and D′
2 has one fewer vertex than D2, contradicting

the minimality of |V (D1)|+ |V (D2)|. Hence, rank(A) < rank(M).

Now suppose rank(B) = rank(M). This follows along the same lines as the previous case, the
only difference being that we must apply Lemma 4.2 to M with rows and columns in reverse.
Either there are two adjacent columns of A that have the same entries or the first column
of A contains only zeroes, corresponding to D1 containing twin vertices or a source vertex,
respectively. The proof then proceeds as before, and thus rank(B) < rank(M). Therefore,
rank(A) = rank(B) = k − 1 and rank(M) = k.
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By Claim 1, inv(D1) = rank(A) + 1 and inv(D2) = rank(B) + 1. Hence, by Corollary 3.2,
A and B (and thus M) must have zero entries on the diagonal. Therefore, every matrix of
M∗(D1 → D2) of minimum rank has rank k and every diagonal entry equal to zero. By
Corollary 3.2, we conclude that inv(D1 → D2) = k + 1, which is a contradiction.

5 Open problems

In light of Theorem 3.3, and the fact that all of the examples in [1,2] of pairs of oriented graphs
D1, D2 with inv(D1 → D2) < inv(D1) + inv(D2) can be obtained by an application of this
theorem, we ask whether these are all such examples.
Question 5.1. Do there exist tournaments D1, D2 with inv(Di) = tmr(Di) for i = 1, 2 and
inv(D1 → D2) < inv(D1) + inv(D2)?

Note that by Corollary 3.2, for any tournament D, if inv(D) is even, then inv(D) = tmr(D).
Hence, a negative answer to this question would disprove the following pair of similar conjectures
(the latter of which is strictly stronger than the former).
Conjecture 5.2 ([1, Conjecture 8.9]). For all ℓ, r ∈ N with ℓ ≥ 3 or r ≥ 3 there exist oriented
graphs D1 and D2 with inv(D1) = ℓ and inv(D2) = r, but inv(D1 → D2) < inv(D1) + inv(D2).
Conjecture 5.3 ([2, Conjecture 5.3]). For all ℓ ≥ 3 there exists an oriented graph D1 with
inv(D1) = ℓ such that for all D2 with inv(D2) ≥ 1, we have inv(D1 → D2) < inv(D1)+inv(D2).

One approach to answering Question 5.1 would be to bound the tournament minimum rank of
the dijoin of two tournaments.
Question 5.4. Do there exist tournaments D1, D2 with tmr(D1 → D2) < tmr(D1)+ tmr(D2)?

A negative answer to this question would be a very strong result that would also answer Ques-
tion 5.1 in the negative, and therefore resolve the two conjectures above. Moreover, we could
immediately conclude that

inv(D1) + inv(D2)− 2 ≤ inv(D1 → D2) ≤ inv(D1) + inv(D2).

for all oriented graphs D1, D2, by a simple application of Proposition 2.2 and Corollary 3.2.

One place to start would be to answer Question 5.4 in the special case when one of the tourna-

ments is
−→
C3, the directed cycle on three vertices.

Conjecture 5.5. For all tournaments D, we have tmr(D →
−→
C3) = tmr(D)+1 = tmr(

−→
C3 → D).

We can generalise the idea of dijoins to sequences of graphs. Given a finite sequence D1, ..., Dk

of oriented graphs, the k-join of D1, ..., Dk, denoted by [D1, ..., Dk], is the oriented graph con-
structed from vertex-disjoint copies of D1, ..., Dk by adding all edges uv where u ∈ V (Di) and
v ∈ V (Dj) for i < j. For ease of notation, we write [D]k for the k-join of k copies of the same
oriented graph D.

Pouzet, Kaddour and Thatte [7] proved that inv
([−→

C3

]
k

)
= k for all k, where

−→
C3 is the directed

cycle on three vertices. Further to this, Alon, Powierski, Savery, Scott and Wilmer [1] proved
that if D1, D2, . . . , Dk are oriented graphs with inv(Di) ≤ 2 for all i and inv(Di) = 2 for at
most one i, then

inv([D1, D2, . . . , Dk]) =
k∑

i=1

inv(Di).

They conjecture that the condition that inv(Di) = 2 for at most one i is unnecessary.

9



Conjecture 5.6 ([1, Conjecture 8.8]). Let k ∈ N, and let D1, . . . , Dk be oriented graphs satis-
fying inv(Di) ≤ 2 for all i. Then inv([D1, . . . , Dk]) =

∑k
i=1 inv(Di).

We remark that inv(D) = tmr(D) for every tournament with inv(D) ≤ 2, and so a negative
answer to Question 5.4 would immediately lead to a proof of this conjecture. In addition,
combined with Corollary 3.2, it would give an affirmative answer to the following question,
yielding a more general result.
Question 5.7. Let k ∈ N, and let D1, . . . , Dk be oriented graphs such that, for every i, either
inv(Di) = 1 or inv(Di) is even. Is inv([D1, . . . , Dk]) =

∑k
i=1 inv(Di)?
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