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Abstract

Given a �nite poset P, we say that a family F of subsets of [n] is P-saturated if F does
not contain an induced copy of P, but adding any other set to F creates an induced copy of
P. The induced saturation number of P, denoted by sat∗(n,P), is the size of the smallest P-
saturated family with ground set [n]. In this paper we prove that the saturation number for
any given poset grows at worst polynomially. More precisely, we show that sat∗(n,P) = O(nc),
where c ≤ |P|2/4 + 1 is a constant depending on P only. We obtain this result by bounding the
VC-dimension of our family.

1 Introduction

We say that a poset (Q,⪯) contains an induced copy of a poset (P,⪯′) if there exists an injective
order-preserving function f : P → Q such that (f(P),⪯) is isomorphic to (P,⪯′). We denote by
2[n] the power set of [n] = {1, 2, . . . , n}. We de�ne the n-hypercube, denoted by Qn to be the poset
formed by equipping 2[n] with the partial order induced by inclusion.

If P is a �nite poset and F is a family of subsets of [n], we say that F is P-saturated if F does
not contain an induced copy of P, and for any S /∈ F , the family F ∪S contains an induced copy of
P. The smallest size of a P-saturated family of subsets of [n] is called the induced saturated number,
and denoted by sat∗(n,P).

It has been shown that the growth of sat∗(n,P) has a dichotomy. Keszegh, Lemons, Martin,
Pálvölgyi and Patkós [8] proved that for any poset the induced saturated number is either bounded
or at least log2(n). They also conjectured that in fact sat∗(n,P) is either bounded, or at least n+1.
Recently, Freschi, Piga, Sharifzadeh and Treglown [3] improved this result by replacing log2(n) with
2
√
n− 2. There is no known poset P for which sat∗(n,P) = ω(n), and it is in fact believed that for

any poset, the saturation number is either constant or grows linearly.
Whilst, as summarised above, some general lower bounds have been established, no non-trivial

general upper bounds have yet been found. Given a general poset P, what can we say about upper
bounds on its saturation number? How fast can it grow? Is it possible to have an intricate partial
relation that forces the saturation number to grow faster than any polynomial? The aim of this
paper is to show that the answer is no: the saturation numbers have at worst polynomial growth.
Our main result is the following.

Theorem 1. Let P be a �nite poset, and let |P| denote the size of the poset. Then sat∗(n,P) =
O(nc), where c ≤ |P|2/4 + 1 is a constant depending on P only.

Induced and non-induced poset saturation numbers are a growing area of study in combina-
torics. Saturation for posets was introduced by Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi and
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Figure 1: The butter�y poset B and the diamond poset D2.

Patkós [4], although this was not for induced saturation. Induced poset saturation was �rst in-
troduced in 2017 by Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan [2]. We brie�y
summarise some of the recent developments below, and also refer the reader to the textbook of
Gerbner and Patkós [5] for a nice introduction to the area.

Determining the saturation number, even for small posets, has proven to be a di�cult question.
The exact saturation number is known for only a precious few posets such as the X and Y posets [3],
chains with at most 6 sets [10], and the fork [2]. The only class of large posets for which exact sat-
uration numbers are known are the k-antichains, denoted by Ak. It is easy to see that a collection
of k − 1 full chains (chains of order n + 1) that intersect only at ∅ and [n] form a k-antichain
saturated family. Thus, for n large enough, we certainly have sat∗(n,Ak) ≤ (k − 1)(n − 1) + 2.
In the other direction, Martin, Smith and Walker [9] showed that for k ≥ 4 and n large enough

sat∗(n,Ak) ≥
(
1− 1

log2(k−1)

)
(k−1)n

log2(k−1) . Recently, Bastide, Groenland, Jacob and Johnston [1]

showed that sat∗(n,Ak) = (k − 1)n − Θ(k log k), and gave the exact value for n su�ciently large
compared to k.

Other posets that have received special attention are the butter�y (Figure 1a), which we denote
by B, and the diamond (Figure 1b), which we denote by D2. The butter�y poset is at least known
to be linear, but the upper and lower bounds di�er by a constant factor. Indeed, the best known
lower bound is sat*(n,B) ≥ n+ 1 as shown by Ivan in [6], while the best upper bound is currently
sat*(n,B) ≤ 6n− 10, as shown by Keszegh, Lemons, Martin, Pálvölgyi and Patkós in [8]. Even less
is known about the diamond. Martin, Smith and Walker [9] proved that

√
n ≤ sat∗(n,D2) ≤ n+ 1.

The lower bound was later improved by Ivan [7] and now stands at sat∗(n,D2) ≥ (2
√
2− o(1))

√
n.

Despite the simple structure of the diamond, whether its saturation number is linear is still unknown.

The proof of Theorem 1 uses the following two new key notions, `cube-height' and `cube-width'.
For a poset P, the `cube-height' is the least k such that, for some n, we can embed P into the
�rst k + 1 layers of Qn, while the `cube-width' is the smallest n that makes such a `small height'
embedding possible. We give formal de�nitions and bounds on these two notions in Section 2. The
cube-height and cube-width are designed to build a P-saturated family with bounded VC-dimension.
This is done in Section 3, where we prove Theorem 1.

Our construction could be viewed as the result of a greedy algorithm where the sets are ordered
according to size (and then arbitrarily within the layers), and an element is added to the family
as long as it does not create a copy of P in the family. Greedy algorithms have been used before
in studying poset saturation, most notably when a greedy colex algorithm gave the linear upper
bound for the butter�y [8]. In particular, this implies that such `layer-by-layer' greedy algorithms
result in a saturated family of growth size n|P|2 while having a near-linear time complexity of
OP(|Qn|(log |Qn|)|P|3). This follows from the fact that for any family F , it can be decided if it is
P-free in OP(|F||P|) time.
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We end the introduction by reminding the reader about the VC-dimension of a family of sets.
We say that a family F of subsets of [n] shatters a set S ⊆ [n] if, for all F ⊆ S, there exists A ∈ F
such that A∩S = F . In other words, {A∩S : A ∈ F} is the power set of S. The VC-dimension of F
is the largest cardinality of a set shattered by F . The size of a family F with bounded VC-dimension
grows at worst polynomially, as shown by the following well-known result.

Lemma 2 (Sauer-Shelah lemma [11, 12]). If F ⊆ 2[n] has VC-dimension d, then |F| ≤
d∑

i=0

(
n

i

)
.

2 Cube-height and cube-width

In this section we discuss how to `�t' a given poset P into a hypercube. We do this with the help
of cube-height and cube-width, the two new quantities mentioned above, which we bound in terms
of |P|. Given two integers h ≤ w, we denote by

([w]
≤h

)
the induced subposet of the hypercube Qw

consisting of all the sets of size at most h, i.e the poset Qw restricted to the �rst h + 1 layers,
0, 1, . . . , h.

De�nition 1. For a poset P, we de�ne the cube-height h∗(P) to be the minimum h∗ ∈ N for which

there exists n ∈ N such that
( [n]
≤h∗

)
contains an induced copy of P.

De�nition 2. For a poset P, we de�ne the cube-width w∗(P) to be the minimum w∗ ∈ N such that

there exists an induced copy of P in
( [w∗]
≤h∗(P)

)
.

We stress that the two notions de�ned above are di�erent from the usual height and width of
P, that is, from the size of the biggest chain and antichain, respectively. It is easy to see that the
height of P is always at most h∗(P) + 1, and that equality can happen (e.g. for a chain), but that
is not always the case. Indeed, if P is the butter�y poset (Figure 1a), then the height of P is 2 and
its cube-height is 3: in any hypercube, the �rst 3 layers are butter�y-free.

Similarly, the width and the cube-width can be very di�erent. For example, if P is a chain of
size k, then its width is 1, but its cube-width is k− 1. Cube-width is not even a monotone property.
For example, the antichain of size

(
k

k/2

)
has cube-height 1 and cube-width

(
k

k/2

)
, but adding a chain

of length k/2 which is less than all elements of the antichain gives a poset with cube-height k/2 and
cube-width k.

It is important to remark that the cube-width is not the minimal n for which the poset can
be embedded in Qn. Indeed, the cube-width of an antichain of size 20 is 20, but Q6 contains an
antichain of size 20, namely the middle layer.

We now bound the cube-height and cube-width in terms of the size of the poset.

Lemma 3. For any poset P, we have that h∗(P) ≤ |P| − 1.

We remark that the inequality in this lemma is tight, since a chain on k elements has cube-height
k − 1.

Proof of Lemma 3. We prove that any poset P on k elements embeds in
( [n]
≤k−1

)
for all n ≥ k by

induction on k.

The base case k = 1 is trivially true since the cube-height of a poset with 1 element is 0. Let
k ≥ 2 and assume the claim is true for all posets of size less than k.



4 PAUL BASTIDE, CARLA GROENLAND, MARIA-ROMINA IVAN AND TOM JOHNSTON

Let P = ({p1, . . . , pk},⪯), and suppose that n ≥ k. We show that P appears as an induced

poset in
( [n]
≤k−1

)
.

Suppose �rst that P has a unique maximal element. After renumbering the elements as necessary,
we may assume that pk is the unique maximal element of P. In this case, using the induction
hypothesis, we �nd sets A1, . . . , Ak−1 ∈

( [k−1]
≤k−2

)
such that they induce a copy of the poset P \ {pk}.

Now let Ak = [k − 1] and observe that A1, . . . , Ak induce a copy of P in
( [n]
≤k−1

)
. Indeed, Ai ⊊ Ak

for all i ≤ k − 1 since Ak has size k − 1, while |Ai| ≤ k − 2 for all i ≤ k.

Suppose now that P does not contain a unique maximal element. We construct the sets
A1, . . . , Ak as follows: for any i, j ∈ [k], i ∈ Aj if and only if pi ⪯ pj . We observe that all
constructed sets are subsets of [k] ⊆ [n] and the size of each Ai is the number elements less than or
equal to pi (including pi), which is at most k−1 since P has no unique maximal element. It remains
to argue that {A1, . . . , Ak} induces a copy of P in Qn.

If pi ̸⪯ pj , then Ai ̸⊆ Aj since i ∈ Ai \ Aj . On the other hand, if pi ⪯ pj , then ℓ ∈ Ai implies
pℓ ⪯ pi, which implies pℓ ⪯ pj by transitivity. Therefore, ℓ ∈ Aj , which shows that Ai ⊆ Aj , as
required.

Note that the proof above gives a simple algorithm for constructing an embedding.

In the lemma above, we embedded P into Q|P|. This cannot be improved in general, as seen in
the following example. Let Pt be the poset consisting of t antichains A1, . . . ,At of size 2, where we
further impose that any element of Ai is less than any element of Aj for all i < j. Now, 2t = |Pt| and
by induction on t it follows that Pt does not embed into Q2t−1. Indeed, since everything below one
of these antichains is a subset of both of its elements, each Ai must use at least two new elements
of the ground set. Thus, this poset can be embedded in Q2t, but not in Q2t−1.

We say that a collection of sets A1, . . . , Ak ⊆ [n] forms an optimal cube-height embedding of P
if they are pairwise distinct and induce a copy of P in

( [n]
≤h∗(P)

)
. By the de�nition of h∗(P) such

an embedding exists, and its ground set is A1 ∪ · · · ∪ Ak, which has size at most h∗(P)k, thus we
immediately get the following corollary.

Corollary 4. For any poset P, w∗(P) ≤ h∗(P)|P| ≤ |P|2.

This corollary can immediately be strengthened by noting that we only need to take the union
over the maximal elements in the embedding, so w∗(P) is bounded by h∗(P) times the number of
maximal elements. Since the number of maximal elements is bounded by the size of the largest
antichain in P, denoted by w(P), this gives the following bound

w∗(P) ≤ h∗(P)w(P).

Whilst Corollary 4 is enough for us to prove that sat*(n,P) = O(n|P|2−1), proving Theorem 1
requires a stronger bound on w∗(P), which is given by the following lemma.

Lemma 5. For any poset P, we have that w∗(P) ≤ |P|2/4 + 2.

In order to prove Lemma 5 we will make use of Lemma 2.2 from [3], which we state below for
completeness.

Lemma 6 ([3], Lemma 2.2). Let F ⊆ 2[n] be such that for every i ∈ [n] there exist two elements

A,B ∈ F such that A \B = {i}. Then |F| ≥ 2
√
n− 2.
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The next proposition tells us that any optimal cube-height embedding has the property stated
in Lemma 6. We remark that this property in itself may be of independent interest, as explained in
the �nal section.

Proposition 7. Let P be a poset and let A1, . . . , Ak ∈
([w∗(P)]
≤h∗(P)

)
be distinct sets that induce a copy

of P. Then for all a ∈ [w∗(P)], there exist i, j ∈ [k] such that Ai \Aj = {a}.

Proof. Suppose there exists a ∈ [w∗(P)] such that there does not exist i, j ∈ [k] with Ai \Aj = {a}.
By relabelling as necessary, we may assume that a = w∗(P), which we denote by w∗ for clarity. We

now replace Ai by Ai \ {w∗} for all i ≤ k. This new family lives in
( [w∗−1]
≤h∗(P)

)
and we claim it still

forms a copy of P. First, notice that we do not decrease the size of the family: for that to happen
there would have to be distinct Ai, Aj such that Aj = Ai ∪ {w∗}, but that would immediately
imply Aj \Ai = {w∗}, a contradiction. We are left to show that comparability and incomparability
relations are preserved. Let Ai, Aj be such that Ai ⊆ Aj . Then Ai \ {w∗} ⊆ Aj \ {w∗}, as required.
Finally, let Ai and Aj be incomparable, and assume that Ai \ {w∗} ⊆ Aj \ {w∗}. This implies that
w∗ ∈ Ai and w∗ /∈ Aj , and consequently Ai \Aj = {w∗}, a contradiction. Therefore, Ai \ {w∗} and
Aj \ {w∗} are incomparable, and we have indeed shown that the new family forms an induced copy

of P. However, this new family lives in
( [w∗−1]
≤h∗(P)

)
, contradicting the de�nition of w∗.

We are now ready to prove the stronger upper bound on w∗(P).

Proof of Lemma 5. Suppose F = {A1, . . . , Ak} forms an optimal cube-height embedding of P in
Qw∗(P). By Proposition 7, F ⊆ 2[w

∗(P)] is a family of sets such that, for every a ∈ [w∗(P)], there

exist two sets Ai, Aj ∈ F with Aj \Ai = {a}. Lemma 6 then implies that |P| = |F| ≥ 2
√
w∗(P)− 2,

and rearranging w∗(P) ≤ |P|2/4 + 2.

3 Proof of the main result

In this section we prove our main result, Theorem 1. Given a poset P and n large enough, we will
construct a P-saturated family in Qn of size at most 2nw∗(P)−1 which, combined with the bound on
the cube-width from the previous section, achieves the claimed result.

Proof of Theorem 1. Let h∗ = h∗(P), w∗ = w∗(P), and assume n ≥ 2w∗. Let F0 be the family
consisting of the �rst h∗ layers, or in other words, all the elements of size at most h∗ − 1. By the
de�nition of the cube-height, the family F0 does not contain an induced copy of P. We now extend
this family to a P-saturated family in an arbitrary fashion. Let F be this resulting family. The
crucial property of this family is the following.

Claim 8. The VC-dimension of F is less than w∗.

Proof. Suppose towards a contradiction that F shatters a set S of size w∗. By de�nition this means
that L = {A ∩ S : A ∈ F} is the power set of S, and it is isomorphic to Qw∗ . Since w∗ is the
cube-width of P, we can �nd a copy of P in L such that all sets have size at most h∗. For simplicity,
we call this copy P.

Let M1, . . . ,Ms be the maximal elements of P, which are subsets of S by construction, and let
P ′ = P \ {M1, . . . ,Ms}. Since we have removed all the maximal elements of P, the height of P ′ is
less than that of P (i.e. h∗(P ′) ≤ h∗(P)− 1), and P ′ is embedded in the �rst h∗ layers. Hence, the
subposet P ′ is contained in F0 ⊆ F .
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Since each Mi is a subset of S, we can �nd Ai ∈ F such that Ai ∩ S = Mi for all i ≤ s. We now
show that P ′∪{A1, . . . , As} is an induced copy of P in F , which will yield the desired contradiction.

First, if B ∈ P ′ is incomparable to Mi, then B is also incomparable to Ai. This is because if B
is a subset of Ai, then it is also a subset of Ai ∩ S = Mi, a contradiction. Conversely, if B ∈ P ′ is a
subset of Mi = Ai ∩ S, then it is a subset of Ai too. We also have that Ai and Aj are incomparable
for i ̸= j as they are incomparable when restricted to S. Finally, Ai can never be a subset of B ∈ P ′,
since Ai ∩ S = Mi is not a subset of B ∩ S = B.

We conclude that P ′ ∪ {A1, . . . , As} is an induced copy of P in F . This gives a contradiction,
proving that the VC-dimension of F is strictly less than w∗, as desired.

Combining Lemma 2 and Claim 8, we conclude that, as n ≥ 2w∗,

sat∗(n,P) ≤ |F| ≤
w∗−1∑
i=0

(
n

i

)
≤ w∗ nw∗−1

(w∗ − 1)!
≤ 2nw∗−1.

Here we have used that m
(m−1)! ≤ 2 for all m ∈ N, and that, since n ≥ 2w∗, the largest binomial

coe�cient in the above sum is
(

n
w∗−1

)
. Finally, Lemma 5 tells us that w∗ ≤ |P|2/4+2, which proves

Theorem 1.

4 Concluding remarks and further work

A �rst very natural question is: how small can the cube-width be? The antichain shows that w∗(P)
may be as large as |P|. However, for all the posets we have considered, the cube-width is always at
most the size of the poset. We conjecture that this has to be true in general.

Conjecture 9. For any �nite poset P, w∗(P) ≤ |P|.

Since we proved that sat*(n,P) = O(nw∗(P)−1), Conjecture 9 would imply that sat∗(n,P) =
O(n|P|−1). That upper bound seems the natural threshold for our VC dimension approach and
indeed our construction may yield families of such a size (e.g. for the chain).

To conclude the paper, we expand on perhaps one of the most surprising phenomenon we observed
in our work. We say that a family F ⊊ Qn separates [n] if for every i ∈ [n] there exist two sets
A and B in F such that A \ B = {i}. Freschi, Piga, Sharifzadeh and Treglown [3] showed that if
the saturation number of a poset P is unbounded, then any induced P-saturated family separates
[n] (and therefore is of size Ω(

√
n)). On the other hand, in Proposition 7, we proved that every

optimal cube-height embedding separates its ground set. We also note that Keszegh, Lemons,
Martin, Pálvölgyi and Patkós [8] arrived at their log2(n) lower bound via a weaker `separability'
property of P-saturated families. This allowed them to build a complete graph on n vertices covered
by complete bipartite graphs, each of these corresponding to exactly one set in the family. Their
lower bound then follows since log2(n) is the biclique cover number for the complete graph on n
vertices.

It seems that poset saturation and separability properties are in some sense deeply interlinked.
In view of this, we feel that improvements towards Conjecture 9 may yield ideas for improvements
on the general

√
n lower bound, or vice versa.



A POLYNOMIAL UPPER BOUND FOR POSET SATURATION 7

References

[1] P. Bastide, C. Groenland, H. Jacob, and T. Johnston, Exact antichain saturation numbers via

a generalisation of a result of Lehman-Ron, arχiv: 2207.07391 (2022).

[2] Michael Ferrara, Bill Kay, Lucas Kramer, Ryan R. Martin, Benjamin Reiniger, Heather C.
Smith, and Eric Sullivan, The saturation number of induced subposets of the Boolean lattice,
Discrete Mathematics 340 (2017), no. 10, 2479�2487.

[3] A. Freschi, S. Piga, M. Sharifzadeh, and A. Treglown, The induced saturation problem for posets,
arχiv: 2207.03974 (2022).

[4] Dániel Gerbner, Balázs Keszegh, Nathan Lemons, Cory Palmer, Dömötör Pálvölgyi, and Balázs
Patkós, Saturating Sperner families, Graphs and Combinatorics 29 (2013), no. 5, 1355�1364.

[5] Dániel Gerbner and Balázs Patkós, Extremal �nite set theory, Discrete Mathematics and its
Applications (Boca Raton), CRC Press, Boca Raton, FL, 2019.

[6] Maria-Romina Ivan, Saturation for the butter�y poset, Mathematika 66 (2020), no. 3, 806�817.

[7] , Minimal diamond-saturated families, Contemporary Mathematics 3 (2022), no. 2, 81�
88.

[8] Balázs Keszegh, Nathan Lemons, Ryan R. Martin, Dömötör Pálvölgyi, and Balázs Patkós,
Induced and non-induced poset saturation problems, Journal of Combinatorial Theory. Series A
184 (2021), Paper No. 105497, 20.

[9] Ryan R. Martin, Heather C. Smith, and Shanise Walker, Improved bounds for induced poset

saturation, Electronic Journal of Combinatorics 27 (2020), no. 2, Paper No. 2.31, 9.

[10] Natasha Morrison, Jonathan A. Noel, and Alex Scott, On saturated k-Sperner systems, Elec-
tronic Journal of Combinatorics 21 (2014), no. 3, Paper 3.22, 17.

[11] N. Sauer, On the density of families of sets, Journal of Combinatorial Theory. Series A 13

(1972), 145�147.

[12] Saharon Shelah, A combinatorial problem; stability and order for models and theories in in�ni-

tary languages, Paci�c Journal of Mathematics 41 (1972), 247�261.

Paul Bastide, LaBRI, Université de Bordeaux, Bordeaux, France
Email address: paul.bastide@ens-rennes.fr

Carla Groenland, Institute of Applied Mathematics, Technische Universiteit Delft (TU Delft),
2628 CD Delft, Netherlands.

Email address: c.e.groenland@tudelft.nl

Maria-Romina Ivan, Magdalene College, University of Cambridge, Cambridge, CB3 0AG, UK and
Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences,
Wilberforce Road, Cambridge, CB3 0WB, UK.

Email address: mri25@dpmms.cam.ac.uk

Tom Johnston, School of Mathematics, University of Bristol, Bristol, BS8 1UG, UK and Heilbronn
Institute for Mathematical Research, Bristol, UK.

Email address: tom.johnston@bristol.ac.uk


	Introduction
	Cube-height and cube-width
	Proof of the main result
	Concluding remarks and further work

