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Abstract. A subspace of Fn
2 is called cyclically covering if every vector

in Fn
2 has a cyclic shift which is inside the subspace. Let h2(n) denote

the largest possible codimension of a cyclically covering subspace of Fn
2 .

We show that h2(p) = 2 for every prime p such that 2 is a primitive root
modulo p, which, assuming Artin’s conjecture, answers a question of Peter
Cameron from 1991. We also prove various bounds on h2(ab) depending on
h2(a) and h2(b) and extend some of our results to a more general set-up
proposed by Cameron, Ellis and Raynaud.

1. Introduction

Let q be a prime power. For n ∈ N, let {e0, e1, . . . , en−1} be the standard
basis for Fnq . Throughout the paper, the indices of vectors in Fnq will be taken
modulo n (in particular, we set en = e0). Define the cyclic shift operator
σ : Fnq → Fnq by

σ

(
n−1∑
i=0

xiei

)
=

n−1∑
i=0

xiei+1.

We say that a subspace U ≤ Fnq is cyclically covering if
⋃n−1
i=0 σ

i(U) = Fnq . For
any n ∈ N, let hq(n) denote the largest possible codimension of a cyclically
covering subspace of Fnq .

We will be primarily interested in cyclically covering subspaces of Fn2 and,
in particular, the following problem posed (in an equivalent form) by Peter
Cameron in 1991 (see [1, Problem 190]).

Problem 1.1. Does h2(n)→∞ as n→∞ over the odd integers or is h2(n) =
2 for infinitely many odd n?

We note that for all odd n ≥ 5, Cameron, Ellis and Raynaud [2] give an
explicit construction for a cyclically covering subspace with codimension 2,
which establishes the lower bound h2(n) ≥ 2. The motivation for the original
formulation came from proving lower bounds for Isbell’s conjecture (stated in
[3]), and we refer the reader to the paper by Cameron, Ellis and Raynaud [2]
for further discussion.

Cameron, Ellis and Raynaud [2] show that h2(mn) ≥ max{h2(m), h2(n)}
for m,n ∈ N. It follows that there are three possibilities for the behaviour of
h2(n) as n→∞ over the odd integers:

(1) either there is a prime p > 2 such that h2(p
n) is bounded over all n ∈ N,
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(2) or there is some M ∈ N such that there are infinitely many primes p
with h2(p) ≤M ,

(3) or h2(n)→∞ over odd integers n.

In Section 2, we improve the stated lower bound by showing that h2(mn) ≥
h2(m) +h2(n) for all m,n ∈ N, which rules out the first case. The main result
of our paper shows that, provided there are infinitely many primes with 2 as
a primitive root, the correct case is the second one.

Theorem 1.2. Suppose that p is a prime for which 2 is a primitive root. Then
h2(p) = 2.

Artin conjectured that there are infinitely many primes for which 2 is a
primitive root; such primes are now known as Artin primes. More generally,
Artin’s conjecture states that for any n ∈ N which is not a perfect square,
there are infinitely many primes p such that n is a primitive root modulo p.
Artin’s conjecture is widely believed; in particular, it follows as a consequence
of the generalised Riemann hypothesis, as shown by Hooley [7]. While there
are no values n for which Artin’s conjecture is known to hold, Heath-Brown [6]
has shown that the conjecture holds for at least one value of n in {2, 3, 5}. In
fact, he showed that the conjecture can only fail to hold for at most 2 primes.

Rather than considering cyclically covering subspaces directly, we will con-
sider the equivalent problem in the orthogonal complement. We say that a
vector v ∈ Fn2 works if for every x ∈ Fn2 there is a k (which we may take to be
in {0, . . . , n−1}) such that v ·σkx = 0, and that the vectors v(1), v(2), · · · , v(m)

work together if, for every x ∈ Fn2 , there is a k ∈ {0, . . . , n− 1} such that

v(1) · σkx = v(2) · σkx = · · · = v(m) · σkx = 0.

Suppose U is a cyclically covering subspace of Fn2 and let v(1), . . . , v(m) be a
basis for U⊥, the orthogonal complement of U . Since U is cyclically covering,
for any x ∈ Fn2 , there exists u ∈ U and a k such that x = σku, so, by definition,

v(i) · σn−kx = v(i) · u = 0 ∀i ∈ [m]

and the vectors {v(1), . . . , v(m)} work together.
Conversely, if we have a set V = {v(1), . . . , v(m)} of vectors which work

together, then U = span(V )⊥ is cyclically covering. Indeed, if x ∈ Fn2 , then by
definition there is a k such that

v(1) · σkx = v(2) · σkx = · · · = v(m) · σkx = 0.

Hence, σkx ∈ U , and x ∈ σn−kU , which shows U is cyclically covering.
This means that h2(n) is the largest value m ∈ Z such that there exist

v(1), . . . , v(m) ∈ Fn2 which work together and are linearly independent.
In Section 2 we use this formulation to prove the lower bound h2(mn) ≥

h2(m)+h2(n), and to give an upper bound of h2(2n) ≤ 2h2(n). In this formula-
tion, there is a direct correspondence between vectors that work and cyclically
covering subspaces with codimension 1, and we give a precise characterisation
of these vectors in Theorem 2.5.

Sections 3, 4 and 5 are all devoted to the proof of our main result, Theorem
1.2. Suppose towards a contradiction that we could find three linearly inde-
pendent vectors that work together for p a prime with 2 as a primitive root.
In Lemma 3.3 we use the fact that F2[X]/〈1 + X + · · · + Xp−1〉 is a field to
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show that we can then also find such a triple for which one of the vectors is
e = (0, 1, . . . , 1). In the remainder of the proof, we show for general primes p
that there are no linear independent e, v, w ∈ Fp2 that work together.

If e, v and w work together, then in particular e and v work together. Based
on computer experiments, we have a very precise conjecture of which vec-
tors v work with e. We call a vector v ∈ Fn2 symmetric if it is of the form
(v0, v1, v2, . . . , v2, v1) (in other words, vi = vj whenever i ≡ −j mod n).

Conjecture 1.3. Suppose that n ∈ N is an odd number that is not divisible by
7. Let v ∈ Fn2 , and suppose that v and e work together. Then v is symmetric.

In Lemma 3.6 we prove that if e, v and w work together and are linearly
independent, neither v nor w can be symmetric. Thus, Conjecture 1.3 would
imply Theorem 1.2. However, we unfortunately were unable to prove this
conjecture.

In Section 4, we make partial progress towards the conjecture. To each
vector v ∈ Fp2, we associate the Cayley digraph Gv on vertex set Z/pZ with
the set A of indices i with vi = 1 as generating set (that is, (i, j) is an arc
if and only if vj−i = 1). This graph is simple1 if and only if v is symmetric.
We show in Proposition 4.1 that e and v work together if and only if Gv has
no induced subgraph on an odd number of vertices where each vertex has odd
outdegree. This shows Conjecture 1.3 is equivalent to the following conjecture.

Conjecture 1.4. Suppose that n ∈ N is an odd number that is not divisible by
7. Let G be a Cayley digraph on Z/nZ. Then G is a simple graph if and only
if G has no odd-sized induced subgraph where each vertex has odd outdegree.

Note that one of the directions follows from the Handshaking Lemma. For
non-symmetric v, the goal is now to find a ‘bad’ subgraph in the graph Gv in
order to show e and v do not work together. We define the girth of v to be
the length of the shortest directed cycle in Gv. In Proposition 4.7, we reduce
to the case in which the girth of v is 4 or 6. For this, we use several additive
results. The main observation is that the generating set A ⊆ Z/pZ has nice
additive properties if Gv has no small cycles. This then allows us to conclude
that A is contained in a small arithmetic progression, which gives us enough
control on the edges of Gv to find the ‘bad’ subgraph.

Even though we cannot prove Conjecture 1.3, we make enough progress in
Section 4 to push through the proof of Theorem 1.2 in Section 5 via a case
analysis on the girth of the vectors v, w and v + w.

In Section 6, we consider the problem of bounding hq(n). This was studied
by Cameron, Ellis and Raynaud [2] and, amongst many other results, they
show that the lower bound h2(mn) ≥ max{h2(m), h2(n)} mentioned earlier
holds even when 2 is replaced by any prime power q. We show how our lower
bound also holds in Fnq and extend the upper bound given in Theorem 2.3 to
this setting as well. Finally, we show that hq(p) = 0 when q is a prime and
p > q is a prime with q as a primitive root.

Our conjecture, and many other interesting questions outlined in Section 7,
are left open.

1We say a digraph (V,E) is simple if it has no self-loops and (i, j) ∈ E if and only if
(j, i) ∈ E.
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1.1. Notation. We use the notation [n] = {1, . . . , n}. For a vector x ∈ Fnq ,
we denote the ith coordinate by xi ∈ Fq and we write |x| =

∑n
i=1 xi ∈ Fq for

the sum of the coordinates (over Fq). For vectors v ∈ Fmq and w ∈ Fnq , we will
write (v, w) ∈ Fm+n

q for their concatenation.
For two sets A and B, we use the standard notation A + B = {a + b : a ∈

A, b ∈ B} and use nA for the sum of n copies of A.

2. Multiplicative bounds

Cameron, Ellis and Raynaud [2, Lemma 3] proved that for any m,n ∈ N,
h2(mn) ≥ max{h2(n), h2(m)}. We offer the following improvement to this
lower bound.

Theorem 2.1. For any m,n ∈ N,

h2(mn) ≥ h2(m) + h2(n)

Theorem 2.1 immediately tells us that h2(ni)→∞ for many sequences ni.

Corollary 2.2. h2(m
n)→∞ as n→∞ for any m for which h2(m) > 0.

Indeed, Theorem 2.1 tells us that h2(m
n) ≥ nh2(m). Note that the condition

h2(m) > 0 is not very restrictive: Cameron, Ellis and Raynaud [2] proved that
h2(m) = 0 if and only if m is a power of 2. We will provide an alternative
proof of this fact later in this section.

We remark that in the proof Theorem 2.1 below, we may replace 2 by any
prime q to give the more general variant stated in Theorem 6.1.

Proof of Theorem 2.1. Let v(1), . . . , v(a) ∈ Fm2 be a set of a = h2(m) linearly
independent vectors which work together for m, and w(1), . . . , w(b) ∈ Fn2 a set
of b = h2(n) linearly independent vectors which work together for n. To prove
the theorem we now give a family of a+ b linearly independent vectors in Fmn2

which work together for mn.
Firstly, for each i ∈ [a] and j ∈ [b], define the vectors ṽ(i) ∈ Fmn2 and

w̃(j) ∈ Fmn2 as

ṽ(i) = (v
(i)
0 , . . . , v

(i)
0︸ ︷︷ ︸

n copies

, . . . , v
(i)
m−1, . . . , v

(i)
m−1︸ ︷︷ ︸

n copies

),

w̃(j) = (w(j), . . . , w(j)︸ ︷︷ ︸
m copies

).

We claim that the family of vectors ṽ(1), . . . , ṽ(a), w̃(1), . . . , w̃(b) all work together
and are linearly independent, which will imply that h2(mn) ≥ a+ b.

First, we prove that the vectors work together; in other words, we will prove
that for any x ∈ Fmn2 , there is a k ∈ Z such that ṽ(i) · σkx = w̃(j) · σkx = 0 for
all i ∈ [a] and j ∈ [b].

Suppose x̃ ∈ Fmn2 . Let y ∈ Fn2 be the vector defined by

y =

(
m−1∑
r=0

x̃rn,

m−1∑
r=0

x̃rn+1, . . . ,

m−1∑
r=0

x̃rn+n−1

)
.
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This means that w̃(j) · σkx̃ = w(j) · σky for all k ∈ Z. Since the w(j) work
together in Fn2 , there is some choice of k ∈ Z such that w(j) · σky = 0 for each
j, which means that w̃(j) · σkx̃ = 0 for each j. We may assume that k = 0 by
replacing x̃ with σkx̃.

Let z ∈ Fm2 be given by

z = (x̃0 + · · ·+ x̃n−1, x̃n + · · ·+ x̃2n−1, . . . , x̃mn−n + · · ·+ x̃mn−1) .

Then
ṽ(i) · σn`x̃ = v(i) · σ`z for all i ∈ [a] and ` ∈ Z.

Since v(1), . . . , v(a) work together for m, there is some choice of ` ∈ [m] such
that v(i) · σ`z = 0 for every i ∈ [a]. We conclude

ṽ(i) · σ`nx̃ = v(i) · σ`z = 0 ∀i ∈ [a],

w̃(j) · σ`nx̃ = w(j) · y = 0 ∀j ∈ [b].

This shows the vectors ṽ(1), . . . , ṽ(a), w̃(1), . . . , w̃(b) all work together, and it only
remains to show that the vectors are linearly independent in Fmn2 .

First, observe that the vectors ṽ(i) ∈ Fmn2 for i ∈ [a] are linearly independent
because the vectors v(i) ∈ Fm2 are linearly independent. Similarly, the family{
w̃(j)|j ∈ [b]

}
is linearly independent because the family

{
w(j)|j ∈ [b]

}
is.

To show that the vectors ṽ(1), . . . , ṽ(a), w̃(1), . . . , w̃(b) are linearly independent,
it suffices to show that any vector that is in the span of the ṽ(i) and also in
the span of the w̃(j) is the zero vector. Suppose that ũ is such a vector.

By considering the standard basis vector x = e0 in the definition of working

together for v(1), . . . , v(a), it follows that there must be an r such that v
(i)
r = 0

for all i ∈ [a]. In particular, ũrn+s = 0 for each s ∈ {0, 1, . . . , n− 1}.
However, the fact that the w(j) are linearly independent means that the only

linear combination w̃ of the w̃(j) for which w̃rn+s = 0 for each s ∈ {0, 1, . . . , n−
1} is zero. Thus, ũ = 0, which means that the vectors ṽ(1), . . . , ṽ(a), w̃(1), . . . , w̃(b)

are linearly independent, as required. �

We also obtain the following rough upper bound.

Theorem 2.3. For any n ≥ 0,

h2(2n) ≤ 2h2(n). (2.1)

Proof. Suppose {v(1), . . . , v(a)} ⊆ F2n
2 is a collection of a = h2(2n) linearly in-

dependent vectors which work together for 2n and write v(i) = (u(i)+w(i), w(i))
for u(i), w(i) ∈ Fn2 . The vectors u(1), . . . , u(a) ∈ Fn2 work together. To see this,
note that for any y ∈ Fn2 , there is a k such that

u(i) · σky = v(i) · σk(y, y) = 0

for every i.
Without loss of generality u(1), . . . , u(`) is a maximal linearly independent

subset of {u(1), . . . , u(a)}. Then for j > ` we can find λ1, . . . , λ` such that
u(j) = λ1u

(1) + · · ·+λ`u
(`). We may replace v(j) with λ1v

(1) + · · ·+λ`v
(`) + v(j)

without changing the span of the v(i) or the fact that they work together. This
will give the vector(

λ1w
(1) + · · ·+ λ`w

(`) + w(j), λ1w
(1) + · · ·+ λ`w

(`) + w(j)
)
.
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Doing this for all j > `, we can assume that u(1), . . . , u(`) are linearly indepen-
dent (hence ` ≤ h2(n)) and that u(i) = 0 for i > `.

In particular, for each i > `, we have v(i) = (w(i), w(i)). We claim that
the vectors w(i) with i > ` are linearly independent and work together. This
implies that h2(2n)− h2(n) ≤ h2(n), which gives the desired result.

The linear independence of the w(i) follows from the linear independence
of the v(i). To show that the w(i) work together we must prove that, for any
y ∈ Fn2 , there is some k such that w(i) · σky = 0 for all i > `.

Since the v(i) work together, there must exist a k < 2n such that v(i) ·
σk(0, y) = 0 for each i > `. But we also have that v(i) = (w(i), w(i)), so

v(i) · σky = (w(i), w(i)) · σk(0, y) = w(i) · σky.

Thus, for this choice of k, we have that w(i) · σky = 0 for all i > `, as required.
�

It is unlikely that (2.1) is tight in general; indeed, if n is such that h2(n) >
1
2

log2(n) + 1, then the tightness of (2.1) would contradict the upper bound
h2(2n) ≤ log2(n) + 1. However, we may combine Theorem 2.3 with the fact
that h2(1) = 0 to deduce the following.

Corollary 2.4. h2(2
i) = 0 for every i ∈ N.

Let W (n) be the set of v ∈ Fn2 which work. The fact that h2(2
i) = 0 implies

that no non-zero vector can work whenever n is a power of 2 (the zero vector
always works). We determine the exact structure of W (n) whenever n is not a
power of 2, which in particular implies h2(n) ≥ 1 when n is not a power of 2.

Theorem 2.5. For n odd, the vectors that work are given by

W (n) = {v ∈ Fn2 : |v| = 0}.

For a odd and b ∈ N,

W (a2b) =
{(
v
(1)
0 , . . . , v

(2b)
0 , v

(1)
1 , . . . , v

(2b)
1 , . . . , v

(1)
a−1, . . . , v

(2b)
a−1

)
: v(1), . . . , v(2

b) ∈ W (a)
}
.

Remark. Since W (1) = {0}, this shows W (2b) = {0} for all b ≥ 0, which agrees
with Corollary 2.4.

Proof. Suppose first that v ∈ Fn2 (where n is odd) is a vector that works. There
must be some k such that v ·σk(1, . . . , 1) = 0. However, for every shift k ∈ [n],

v · σk(1, . . . , 1) = |v|.

Hence any vector which works must satisfy |v| = 0.
Conversely, suppose that |v| = 0. Given x ∈ Fn2 , the number of shifts k with

v · σkx = 1 is given by

|{k : v · σkx = 1 mod 2}| = v ·
n−1∑
k=0

σkx = |v||x|.

Since |v| = 0, this shows the number of shifts k with v · σkx = 1 is even. Since
n is odd, there are an odd number of shifts k with v · σkx = 0. In particular,
there is at least one such k, proving the first claim.
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Suppose now that n is of the form a2b where a is odd. Let v ∈ W (n) be

given and split it into components v(1), . . . , v(2
b) by writing

v = (v
(1)
0 , . . . , v

(2b)
0 , v

(1)
1 , . . . , v

(2b)
1 , . . . , v

(1)
a−1, . . . , v

(2b)
a−1). (2.2)

Let w ∈ F2b

2 be the vector with coordinates wj = |v(j)|. Suppose that w 6= 0.

By Corollary 2.4, we know that there is some vector z ∈ F2b

2 for which all shifts
fail, or in other words, such that

w · σkz = 1 ∀k ∈ [2b].

Now consider the vector x ∈ Fn2 given by

x = (z, z, . . . , z︸ ︷︷ ︸
a times

) = (z1, . . . , z2b , z1, . . . , z2b , . . . , z1, . . . z2b) .

Then, noting that a is odd,

v · σkx = a(w · σkz) = 1 ∀k ∈ [n].

This contradicts the assumption that v works. Hence we find that wj = |v(j)| ≡
0 for all j ∈ [2b], which shows that v(1), . . . , v(2

b) ∈ W (a).

Conversely, suppose v is given in the form (2.2) for v(1), . . . , v(2
b) ∈ W (a).

Let x ∈ Fn2 be arbitrary, and split it into components x(1), . . . , x(2
b) in the same

way. We will show that

|{k ∈ [a] : v · σ2bkx = 0}|

is odd. Note that

a∑
k=1

v · σ2bkx =
a∑
k=1

 2b∑
j=1

v(j) · σkx(j)


=
2b∑
j=1

(
a∑
k=1

v(j) · σkx(j)
)

=
2b∑
j=1

|v(j)||x(j)| = 0.

This shows that the number of k ∈ [a] for which v · σ2bkx = 1 has to be even.
Since a is odd, this proves our claim. �

3. Primitive roots and a structural conjecture

In order to prove Theorem 1.2, we must first think about the structure of
Fn2 . For this, it will be easiest to think about vectors as polynomials, as in [2].

Given a vector v ∈ Fn2 , let its corresponding polynomial be

fv(X) = v0 + v1X + v2X
2 + · · ·+ vn−1X

n−1 ∈ F2[X]/〈Xn − 1〉.

We say a set of polynomials fv(1) , . . . , fv(m) work together if and only if, for
every vector x ∈ Fn2 , there is some k such that the coefficient of Xk in fv(i)fx
is 0 for each i ∈ [m]. The following proposition shows that the two definitions
of working together are equivalent, and so we can use them interchangeably.
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Proposition 3.1. The vectors v(1), . . . , v(m) work together if and only if the
corresponding polynomials fv(1) , . . . , fv(m) work together.

Proof. By definition, v(1), . . . , v(m) work together if and only if, for every x ∈
Fn2 , there is a k such that v(i) · σkx = 0 for each i ∈ [m].

Let rev(x) be the reverse of x (so rev(x)j = x−j for each j). The constant
coefficient of(
v0 + v1X + · · ·+ vn−1X

n−1) (x0 + x1X + · · ·+ xn−1X
n−1) mod (Xn − 1)

is given by

v0x0 + v1xn−1 + v2xn−2 + · · ·+ vn−1x1 = v · rev(x).

Similarly,

v(i) · σk(rev(x)) =
n−1∑
j=0

v
(i)
j rev(x)j−k =

n−1∑
j=0

v
(i)
j xk−j

is the coefficient of Xk in fv(i)fx.
Thus, v(i) · σk(rev(x)) = 0 for every i ∈ [m] if and only if the coefficient of

Xk of fv(i)fx is 0 for every i ∈ [m]. �

Since αfv + fw = fαv+w for all α ∈ F2 and v, w ∈ Fn2 , a collection of
vectors v(1), . . . , v(m) is linearly independent if and only if the corresponding
polynomials fv(1) , . . . , fv(m) are linearly independent.

Remark. The m = 1 case of Proposition 3.1 gives an alternative approach to
prove Theorem 2.5. Indeed, Proposition 3.1 tells us that the vector v will work
if and only if fv works. By definition, fv works if and only if, for every x ∈ Fn2 ,
there is a k with k ∈ {0, . . . , n − 1} such that the Xk coefficient of fvfx is 0;
in other words, fv works if and only if fv does not divide 1 +X + · · ·+Xn−1

in F2[X]/〈Xn − 1〉.
Since (1 + X)(1 + X + · · · + Xn−1) = Xn + 1, note that the polynomial fv

does not divide 1 + X + · · · + Xn−1 exactly when (1 + X)r divides fv, where
(1+X)r is the highest power of 1+X which divides Xn+1. To see why, factor
Xn + 1 as (1 + X)rg(X) for some polynomial g which is coprime to (1 + X),
and so 1 + X + · · · + Xn−1 = (1 + X)r−1g(X). The polynomial fv divides
1 +X + · · ·+Xn−1 modulo Xn + 1 if and only if it divides 1 +X + · · ·+Xn−1

modulo (1 + X)r and g(X). Since 1 + X + · · · + Xn−1 is 0 mod g(X), this is
equivalent to fv dividing (1 + X)r−1 modulo (1 + X)r, which is the same as
(1 +X)r not dividing fv.

Now, r = 2b, where 2b is the highest power of 2 which divides n. Thus, fv
does not divide 1 +X + · · ·+Xn−1 exactly when (1 +X)2

b
divides fv, which

is equivalent to the description given in Theorem 2.5.

This alternative formulation in terms of polynomials is particularly useful
when n = p is a prime with 2 as a primitive root. This is because of the
following well-known results.

Lemma 3.2 ([8, Theorem 2.47 (ii)]). Let p be an odd prime and let ordp(2) be
the multiplicative order of 2 mod p. Then the polynomial 1 + X + · · · + Xp−1

splits as a product of t distinct irreducible factors in F2[X], where t = p−1
ordp(2)

.

In particular, if 2 is a primitive root mod p, then 1 + X + · · · + Xp−1 is
irreducible in F2[X].
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Lemma 3.3 ([8, Theorem 1.61]). The quotient ring F2[X]/〈f〉 is a field if and
only if the polynomial f is irreducible over F2.

The following lemma is key to our approach to proving Theorem 1.2, and is
the only part of the proof which requires 2 to be a primitive root modulo p.

Lemma 3.4. Let p be a prime with 2 as a primitive root, and define the vector
e to be the vector such that e0 = 0 and ei = 1 for i 6= 0. Suppose that the
vectors v(1), . . . , v(m) work together and are linearly independent. Then there is
a collection of m linearly independent vectors which work together, and which
contains e.

Proof. Each polynomial fv(i) works individually. By Theorem 2.5, this means
|v(i)| = 0, which means that fv(i) is divisible by 1+X as fv(i)(1) = 0. Since none
of the polynomials can be the zero polynomial, they must all be equivalent to
a nonzero polynomial modulo 1 +X + · · ·+Xp−1.

By Lemma 3.2, Xp − 1 factors into irreducibles as

Xp − 1 = (X + 1)(1 +X + · · ·+Xp−1).

Thus, F2[X]/(Xp − 1) ∼= F2[X]/(X + 1) ⊕ F2[X]/(1 + X + · · · + Xp−1),
and Lemma 3.3 tells us that the two factors are fields. In particular, the
irreducibility of 1 +X + · · ·+Xp−1 tells us that each fv(i) is invertible modulo
1 +X + · · ·+Xp−1.

Thus, we may use the Chinese Remainder Theorem to find a polynomial q
which is 1 mod (1 +X) and an inverse to fv(1) modulo (1 +X + · · ·+Xp−1).

Now, qfv(1) is 0 mod (X + 1) and 1 mod (1 +X + · · ·+Xp−1), so

qfv(1) = X + · · ·+Xp−1 = fe.

We claim that the polynomials qfv(1) , . . . , qfv(m) still work together and are
linearly independent. Taking the vectors in Fp2 corresponding to the given
polynomials then gives the collection of vectors required by the statement of
the lemma.

Suppose first that qfv(1) , . . . , qfv(m) do not work together; thus, there exists
a vector x ∈ Fp2 such that, for any k, there is an i ∈ [m] such that the Xk

coefficient of fxqfv(i) is 1. Writing fxq = fx′ for some x′ ∈ Fp2, we find that,
for any k, there is an i ∈ [m] such that the Xk coefficient of fx′fv(i) is 1. This
contradicts the assumption that the v(i) work together.

Next, suppose that the qfv(i) are not linearly independent. Then there is a
relation ∑

i

λiqfv(i) ≡ 0 mod (Xp − 1)

for some choice of λi ∈ F2 not all 0. However, q is invertible modulo Xp − 1
by construction, so ∑

i

λifv(i) ≡ 0 mod (Xp − 1).

This contradicts the linear independence of the fv(i) . �

Lemma 3.4 tells us that in order to show that h2(p) = 2 for a prime p with
2 as a primitive root, it suffices to show that there is no collection of three
linearly independent vectors e, v, w which work together.
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We now turn to examining the structure of the set of vectors v ∈ Fn2 which
work with e. There is a fairly substantial collection of vectors v which work
with e, as shown by the following proposition.

Proposition 3.5. Let n be any odd number, and suppose v ∈ Fn2 is a vector
with v0 = 0. Suppose further that v is symmetric, in that vi = v−i for each i.
Then v works together with e.

Proof. Let x ∈ Fn2 be any vector. We must prove that there exists a k such
that e · σkx = v · σkx = 0.

First, observe that we may assume that x has odd weight. If x has even
weight, we can add the vector z = (1, . . . , 1) of all ones; this gives a vector of
odd weight. Now, v · σkz = e · σkz = 0; to see why, observe that v must have
even weight by virtue of being symmetric and e must have even weight as n
is odd. Therefore, adding z does not change the inner products v · σkx and
e · σkx.

Now, e · σkx = 0 exactly when x−k = 1, and for such a choice of k,

v · σkx =
∑

i:xi−k=1

vi. (3.1)

Summing (3.1) over all of the values of k with x−k = 1, we obtain∑
k:x−k=1

v · σkx =
∑

(k,i):x−k=xi−k=1

vi

=
∑

(j1,j2):xj1=xj2=1

vj2−j1 .

Since v0 = 0, and vj2−j1 + vj1−j2 = 0, this sum is 0.
Therefore, the sum of v · σkx over all k such that e · σkx = 0 is zero. Since

there are an odd number of such k (as x has odd weight), at least one of these
k must have e · σkx = v · σkx = 0. �

Since e and v work together whenever v is symmetric, the following lemma
will be necessary if we are to prove that h2(p) = 2.

Lemma 3.6. Let p > 3 be a prime, and suppose that v 6= e is a non-zero
symmetric vector. Suppose further that w ∈ Fp2 is any vector such that e, v
and w work together. Then w is contained in the subspace 〈e, v〉 spanned by e
and v.

In order to prove this, we will rely on the Cauchy-Davenport inequality [10,
Theorem 5.4] and Vosper’s theorem [10, Theorem 5.9], both of which we state
here for convenience.

Theorem 3.7 (Cauchy-Davenport Inequality). Suppose that p is a prime, and
A and B are two nonempty sets in Z/pZ. Then

|A+B| ≥ min(|A|+ |B| − 1, p).

Theorem 3.8 (Vosper’s Theorem). Suppose that p is a prime, and A and B
are two sets in Z/pZ. Suppose that |A|, |B| ≥ 2 and |A + B| ≤ p − 2. Then
|A+B| = |A|+ |B|−1 if and only if A and B are arithmetic progressions with
the same common difference.
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We will often implicitly use the following observation, which gives a simple
restriction on vectors v that can work together with e.

Observation 3.9. Suppose that v ∈ Fn2 works with e. Then v0 = 0.

This follows by considering the test vector x = e0 of weight 1. Since σkx · e
is only zero if k = 0 and e works with v, we must have that v0 = e0 · v = 0.

Proof of Lemma 3.6. Suppose that v ∈ Fp2 is symmetric, nonzero and not equal
to e. Let A ⊆ Z/pZ consist of the values of i for which vi = 1, and let
B ⊆ (Z/pZ) \ {0} consist of the values of i (except 0) for which vi = 0.
Observe that both A = −A and B = −B since v is symmetric, and that
|A|, |B| ≥ 2 as we assume that v is non-zero and v 6= e.

The space 〈e, v〉 consists of the four vectors u which satisfy both that u0 = 0
and that u is constant on both A and B. Thus, if w is a vector that works
together with both e and v, it suffices to prove that w is constant on both A
and B, since w0 = 0 by Observation 3.9.

Consider the equivalence relation ∼ on (Z/pZ) \ {0} generated as follows.
We say that i ∼ j if wi = wj for all w which work together with e and v.
Thus, it suffices to prove that the only two equivalence classes are A and B.
The following claim will help us to do so.

Claim. Suppose that i ∈ B and j ∈ A are such that i+ j ∈ A. Then j ∼ i+ j.
The same also holds with A and B reversed.

Proof of Claim. We only prove the first case as the second is almost identical.
Consider the vector x = e0 + ei + e−j of weight 3. The only shifts of x which
are orthogonal to e are x, σ−ix and σjx, and by assumption neither x nor σ−ix
are orthogonal to v.

Thus the only shift of x which is orthogonal to both e and v is σjx, and this
must therefore be orthogonal to w for all vectors w that work together with e
and v. Hence wj = wi+j for all such w, which means that j ∼ i+ j. ♦

Now, we prove that the only two equivalence classes are A and B. We will
prove that A is an equivalence class; the proof that B is an equivalence class
is almost identical. Suppose that C ( A is an equivalence class of ∼ which is
not the whole of A; without loss of generality, we may assume that C is the
smallest such class, which means that |C| ≤ |A|/2.

Suppose that i ∈ B and j ∈ C. Then i + j 6= 0, so either j + i ∈ B, or
j+ i ∈ A. In the latter case, j ∼ j+ i, and so the claim tells us that j+ i ∈ C.
In particular, we always have j + i /∈ A \ C. Thus, B + C ⊆ B q C.

Now, letting B0 = B q {0} and C0 = C q {0}, we see that

B0 + C0 ⊆ B q C q {0}. (3.2)

Since C 6= A, it must be the case that |BqC q{0}| < p. Thus, by Cauchy-
Davenport we have that |B0 +C0| ≥ |B0|+ |C0| − 1 = |B|+ |C|+ 1, and so we
have equality here and in (3.2). Both of B0 and C0 have at least two elements,
so we have two cases.

Case 1: |B0 + C0| ≥ p− 1. Then |B| + |C| + 1 = |B0 + C0| = p− 1, and
so A \ C has only one element. By assumption, |C| ≤ |A|/2, and so we must
have |A| = 2 and |C| = 1.
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Since A is symmetric, it is of the form {−a, a} with either a or −a the
unique element of C; without loss of generality, we can assume that C = {1}
and A = {−1, 1}. Since p > 3, we must have 2 ∈ B, and applying the Claim
with i = 2 and j = −1 gives −1 ∼ 1. This contradicts the fact that C is an
equivalence class.

Case 2: |B0 + C0| ≤ p − 2, and so we can apply Vosper’s Theorem. This
tells us that B0 and C0 are arithmetic progressions with the same common dif-
ference, which we may assume is 1 by scaling. Since 0 is part of the arithmetic
progression B0 and B0 = −B0, both 1 and −1 must be in B0. However, C0 is
an arithmetic progression with common difference 1, so either 1 or −1 must
be in C0. This contradicts the fact that C ⊆ A and A and B are disjoint.

We conclude that the only two equivalence classes must be A and B. There-
fore, any vector w which works with both e and v must be constant on both A
and B, which means that w is contained in the span of e and v, as required. �

As well as using that n is odd, the proof of Proposition 3.5 crucially relies
on the fact that v is symmetric. In view of this, it is tempting to conjecture
that a converse is true; in other words, that the only vectors v ∈ Fn2 which
work together with e are the symmetric vectors. This leads us to propose
Conjecture 1.3. Indeed, if Conjecture 1.3 were true, then Lemma 3.4 and
Lemma 3.6 would tell us immediately that h2(p) = 2 for any prime p with 2
as a primitive root.

Note that Conjecture 1.3 cannot hold for p = 7, as demonstrated by the
following counterexample.

Observation 3.10. In F7
2, the following two vectors work together:

e = (0, 1, 1, 1, 1, 1, 1)

v = (0, 1, 1, 0, 0, 0, 0).

We have verified Conjecture 1.3 for 3 ≤ n ≤ 43, and have some partial
progress towards it for arbitrary primes. We will present our partial progress
in the next section, and then show how we can use it to prove Theorem 1.2 in
Section 5.

4. Partial progress towards conjecture 1.3

In this section, we show that any vector v which is a counterexample to
Conjecture 1.3 must have certain properties.

4.1. A further reformulation of the problem. First, we provide a rein-
terpretation of the statement that v works together with e, which will help us
to describe the structure of such a vector.

To any vector v ∈ Fn2 , we associate a Cayley (multi)digraph Gv on vertex set
Z/nZ, where we draw a directed edge from i to i+ j exactly when vj = 1. By
Observation 3.9, we may restrict to vectors v ∈ Fn2 with v0 = 0, which means
that Gv will have no self-loops. The relevance of Gv to our problem is given
by the following proposition.

Proposition 4.1. Let n be odd. A vector v ∈ Fn2 with v0 = 0 works together
with e if and only if Gv has no induced subgraph on an odd number of vertices
where each vertex has odd outdegree.
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Figure 1. The Cayley graph Gv for v = (0, 1, 0, 0, 0, 0, 1, 0, 0).
The graph induced on {0, 1, 2, 4, 8} is of odd size and every vertex
has odd outdegree so the vector (1, 1, 1, 0, 1, 0, 0, 0, 1) shows that
e and v do not work together.

Proof. Suppose first that v and e do not work together. Equivalently, there
exists a vector x ∈ Fn2 such that any shift σkx is non-orthogonal to at least
one of e and v. Note that v must have even weight, else the vertices of Gv all
have odd outdegree and Gv itself is our required subgraph. In particular, we
may assume that x has odd weight.

Let A = {i : xi = 1}, and consider Gv[A]. We have that σ−kx is orthogonal
to e exactly when xk = 1. Thus, for each k with xk = 1, we must have
v · σ−kx = 1. Now, note that

v · σ−kx =
∑
i:xi=1

vi−k =
∑
i∈A

vi−k =
∑

i∈A:i,i−k∈A

1,

which is exactly the outdegree of k in Gv[A] modulo 2. Thus, Gv[A] is our
required subgraph.

Conversely, suppose that A is a set with odd size such that every vertex in
Gv[A] has odd outdegree. Define the vector x by x =

∑
i∈A ei. As A has odd

size, e · σ−kx = 0 if and only if k ∈ A. But for such a k, v · σ−kx = 1 as it
is the outdegree of k in Gv[A] modulo 2. Thus, no shift of x is orthogonal to
both e and v, proving that e and v do not work together. �

Remark. Proposition 4.1 gives an easy proof of Proposition 3.5. Indeed, if v
is symmetric, then Gv is a proper graph, and so, by the Handshaking Lemma,
any subgraph with an odd number of vertices must have a vertex with even
degree (in the subgraph).

By the following lemma, outdegree can also be replaced with indegree.

Lemma 4.2. The graph Gv has an odd induced subgraph where each vertex has
odd indegree if and only if it has an odd induced subgraph where each vertex
has odd outdegree.

Proof. If there is an edge from i to j in Gv[A], then there is an edge from −j
to −i in Gv[−A]. Hence, passing from Gv[A] to Gv[−A] swaps the indegrees
and the outdegrees (and the number of vertices remains odd). �

We call an induced subgraph H of Gv a bad subgraph if
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(1) H has an odd number of vertices and
(2) at least one of the following holds:

(a) each vertex in H has odd outdegree within H;
(b) each vertex in H has odd indegree within H.

In particular, an odd induced cycle is a bad subgraph.
Proposition 4.1 and Lemma 4.2 imply that for v ∈ Fn2 with v0 = 0, v works

with e if and only if Gv has no bad subgraphs. An example of a bad subgraph
is given in Figure 1.

In what follows, we will assume that certain non-symmetric vectors work
together with e and will try to find a contradiction by finding a bad subgraph.

4.2. Restricting the edges of the digraph. For the remainder of the ar-
gument, we will work in Fp2, where p is an odd prime. We will be searching for
a bad subgraph in Gv, where v ∈ Fp2 is a non-symmetric vector with v0 = 0.
Given such a v that works with e, Gv is a directed graph which may include
two-way edges. We will first show that we may assume that this does not
happen, which means that Gv is a proper digraph.

Lemma 4.3. Suppose that v ∈ Fp2 is non-symmetric with v0 = 0. Suppose that
there is simultaneously i with vi = v−i = 1 and j 6= 0 with vj = v−j = 0. Then
Gv has a bad subgraph.

Proof. Suppose that v ∈ Fp2 works with e; in other words, Gv has no bad
subgraphs. Define the sets A = {i : vi = v−i = 1} and B = {j 6= 0 : vj =
v−j = 0}. The condition on v is therefore that both A and B are nonempty.

To prove Lemma 4.3, we will use the following claim.

Claim. A+B ⊆ AqB.

Proof of Claim. Suppose that i ∈ A and j ∈ B. We must show that i + j ∈
A q B. Assume this is not the case and consider the subgraph of Gv induced
on {−i, 0, j}. By our assumptions, there is no edge between 0 and j, a two-way
edge between 0 and −i and a one-way edge between −i and j.

There are two cases, depending on the direction of the edge between −i and
j. If it is directed from −i to j, then each vertex has indegree 1. Otherwise,
each vertex has outdegree 1. In either case, Gv[{−i, 0, j}] is a bad subgraph.
♦

Now, we have A+B ⊆ AqB, which means that A0+B0 ⊆ AqBq{0}, where
A0 = Aq{0} and B0 = Bq{0}. We know that |A0| > 1 and |B0| > 1 since A
and B are assumed to be nonempty. Furthermore, |A0 +B0| ≤ |A|+ |B|+ 1 ≤
p− 2, since otherwise AqB q {0} = Z/pZ and v is symmetric.

Thus, Vosper’s Theorem allows us to conclude that A0 and B0 are both
arithmetic progressions with the same common difference d. Since A = −A
and B = −B are both symmetric, we deduce that {d,−d} is contained in both
A0 and B0, which contradicts the fact that they are disjoint. �

If v is a vector such that there is at least one value of i with vi = v−i = 1, we
will say that v is large. Otherwise, v is small. In particular, v is small if and
only if Gv is a proper digraph. Lemma 4.3 tells us that if v is non-symmetric
and works with e, either v or e + v must be small.
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Consequently, we will only consider small vectors v. Given such a v, we will
look for bad subgraphs of Gv. We will do this by looking at the shortest cycle
in Gv (throughout this paper, we use cycle to refer to a directed cycle). This
cycle must have length at least 3 because Gv is a proper digraph, and must be
induced else Gv would have a shorter cycle. We will say that the girth of Gv,
or (abusing notation) the girth of v, is the length of the shortest cycle in Gv.

For the results below, we assume the following standard notation.

Standard notation. We will use v to denote a nonzero small vector in Fp2
with v0 = 0 that works together with e. Let A = A(v) be the set {i : vi = 1}.
Since v is small, A and −A are disjoint. Let A0 = A

(v)
0 be A q {0} and let k

be the girth of Gv.

We may immediately make some simple observations.

Lemma 4.4. Using the standard notation, the following hold.

(1) k is even.
(2) 0 /∈ (k − 2)A0 + A, or in other words

|(k − 2)A0 + A| ≤ p− 1. (4.1)

Proof.

(1) The shortest cycle in Gv is an induced subgraph in which each vertex
has indegree and outdegree 1. Thus, as v and e work together, such a
subgraph must have an even number of vertices, which means that k
must be even.

(2) If 0 can be written as a sum of k− 1 elements of A0, not all zero, then
we get a corresponding cycle of length at most k − 1 in Gv, which we
assume does not exist. The inequality (4.1) follows immediately. �

The next proposition gives bounds on the size of A.

Proposition 4.5. Using the standard notation given above,
p

k
< |A| < p

k − 1
. (4.2)

The proof of Proposition 4.5 relies on the following lemma.

Lemma 4.6. Suppose that C is a k-cycle in Gv where v and k are as given
in the standard notation. For any i 6∈ C, there are at least two edges between
i and C (ignoring direction).

Proof. If there is one edge from i to C, then C q {i} induces a bad subgraph
as each vertex has outdegree 1. If there is one edge from C to i, then C q {i}
induces a bad subgraph as each vertex has indegree 1. In either case, we find
a bad subgraph, contradicting the assertion that v and e work together.

Suppose instead that there are no edges at all between i and C. Without
loss of generality (since Gv is vertex transitive), we may assume 0 ∈ C and
write C as C = {0, a1, a1 + a2, . . . , a1 + · · · + ak−1} for some a1, . . . , ak ∈ A
with a1 + · · ·+ ak = 0.

Consider doing a single swap of a1 with a2; that is, we replace the order
of the edges labelled a1 and a2 in the cycle C to get a new cycle C1. Thus,
C1 = C \ {a1} ∪ {a2}. Observe that the subgraph induced on C1 is also a
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k-cycle, as any other edges between vertices would create a shorter cycle, and
this does not exist by the assumption that C is a shortest cycle. Note that
this swap changes the number of edges between i and the cycle by at most
one, since at most one vertex is changed. There cannot be an edge between
the new vertex a2 and i since that would put us in the earlier case, so we find
that i is not connected to C1.

We can continue doing this; swap a1 with a3 to form C2 = {0, a2, a2+a3, a1+
a2+a3, . . . , a1+ · · ·+ak−1}, and again i can have no edges to or from C2. After
k−1 iterations, we form the cycle Ck−1 = {0, a2, a2+a3, . . . , a2+a3+ · · ·+ak},
and there are no edges between i and Ck−1. Since

∑
i ai = 0, we can rewrite

this as Ck−1 = {a1 − a1, a1 + a2 − a1, . . . , a1 + a2 + · · ·+ ak−1 − a1, 0− a1} so
Ck−1 = C − a1 (having shifted any fixed starting point).

If we consider Ck−1 as starting at −a1, the first edge to 0 again corresponds
to adding a1 and we can repeat this procedure, but starting with Ck−1. This
gives the cycle C2(k−1) = C − 2a1, and we can continue iterating. Since p is
prime and a1 6= 0, we will see the family of cycles {C − j : j ∈ Z/pZ}, and in
particular every point, is in some cycle.

However, throughout this procedure, i will never be connected to any point
in any of these cycles. This contradicts the assertion that every element of
Z/pZ is contained in some cycle, in view of the fact that i is connected to
every element of i+ A.

Thus, there must be at least two edges between i and C. �

Proof of Proposition 4.5. The upper bound follows immediately from (4.1) and
k − 2 applications of the Cauchy-Davenport inequality.

For the lower bound, we will use Lemma 4.6. Let C be the vertex set of a
cycle of length k in Gv. We will count the number of pairs (i, j) with i ∈ Z/pZ
and j ∈ C such that there is an edge between i and j. Each element of C has
|A| outedges and |A| inedges. Thus, there are 2|A| pairs for each j ∈ C, and
so 2k|A| pairs in total.

On the other hand, Lemma 4.6 tells us that there are at least 2 edges for
each i ∈ Z/pZ, and so there are at least 2p edges. Therefore, 2p ≤ 2k|A|,
which rearranges to give the lower bound claimed in Proposition 4.5.

To see the strict inequality, observe that k is not a factor of p; indeed, if
k = p then C = Z/pZ induces an odd cycle. �

4.3. Eliminating large girth. We will continue to restrict the possible small
non-symmetric vectors v that can work together with e. Throughout this
section we will assume the standard notation. Recall that, A = {i : vi = 1}
and A0 = Aq {0}, and since v is small, A and −A are disjoint. Denote again
Gv for the Cayley graph generated by A as defined before Proposition 4.1. The
main result of this subsection is an upper bound on the girth k of Gv.

Proposition 4.7. If a small v 6= 0 works together with e, then the girth of v
is 4 or 6.

Our proof of Proposition 4.7 will rely on a weak version of a theorem due to
Grynkiewicz.
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(a) The induced 4-cycle C.
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(b) The cycle C1 formed by swapping a
with b.
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(c) The cycle C3 = C − a.
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(d) The cycle C3 = C − a after changing
the point of view.

Figure 2. Various snapshots of C throughout the swapping process.

Theorem 4.8 ([4, Theorem 19.3]). Let p be a prime, let α ∈ (0, 0.45695] and
let X ⊆ Z/pZ be a nonempty subset such that |2X| = 2|X|−1+r < p. Suppose
that the following two bounds hold:

|2X| ≤ (2 + α)|X| − 3, (4.3)

|2X| ≤ min

{
p+ 3

2
,
9− (1 + 2α)2 (2 + α)

9− (1 + 2α)2
p

}
. (4.4)

Then, X is contained in an arithmetic progression of length at most |X|+ r.

Remark. Theorem 4.8 is similar to Freiman’s 3k − 3 theorem [10, Theorem
5.11], except in Z/pZ rather than Z (and with slightly altered conditions).
In Freiman’s 3k − 3 theorem, the conditions (4.3) and (4.4) are not needed;
instead, the conclusion is satisfied by any set A with |2A| < 3|A| − 3. It is
conjectured that a similar weakening of the conditions should hold in Z/pZ
(see [4, Conjecture 19.2]).

There are various similar results in the literature which also provide weak
forms of Freiman’s 3k − 3 theorem in Z/pZ; for instance, Serra and Zémor
prove in [9] that the size constraint (4.4) can be omitted, at the expense of
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a worse bound on the doubling |2X| ≤ (2 + ε)|X| for some small constant ε
(and sufficiently large p). Such a result could be used to obtain a version of
Proposition 4.7 with a weaker bound on the girth.

In particular, we obtain the following instance of Theorem 4.8 by taking
α = 1/3.

Corollary 4.9. Let p be a prime, and let X ⊆ Z/pZ be a nonempty subset.
Suppose that

|2X| ≤ 7

3
|X| − 3 (4.5)

|2X| ≤ 17

42
p. (4.6)

Then X is contained in an arithmetic progression with |2X| − |X|+ 1 terms.

We will also need a strong upper bound on the value of k, depending on p,
in the case that A0 is not an arithmetic progression.

Lemma 4.10. If A0 is not an arithmetic progression, then k ≤
√
p+ 2.

Proof. Suppose that A0 is not an arithmetic progression. Note that this implies
|A| ≥ 2.

Equation (4.1) tells us that |(k−2)A0 +A| ≤ p−1. The Cauchy-Davenport
inequality gives |(k − 2)A0| ≤ p − |A|, and thus a repeated application of
Vosper’s theorem gives us that (k − 2)|A0| ≤ |(k − 2)A0| ≤ p− |A|.

Write p = rk + s, where 0 < s < k and r ≥ 0. We have that |A| ≥ r + 1
by Proposition 4.5, and so the above inequality (k − 2)|A0| ≤ p − |A| gives
(k − 2)(r + 2) ≤ (k − 2)|A0| ≤ p − |A| ≤ (rk + s) − (r + 1). This rearranges
to give

2k − 3 ≤ r + s. (4.7)

If r < k − 1, then this equation gives r = k − 2, s = k − 1, and hence
p = k2− k− 1. The only value of |A| satisfying Proposition 4.5 is |A| = k− 1,
which is odd because k is even. However, |A| must be even, else the whole of
Gv is a bad subgraph, so we must have r ≥ k − 1. If r ≥ k, we have p ≥ k2.
Else we have r = k−1 and equation 4.7 gives s ≥ k−2, and so p ≥ k2−2. �

Finally, we will need to use the following theorem due to Hamidoune and
Rødseth [5], which is an extension of Vosper’s Theorem. Say that an almost
progression is an arithmetic progression, possibly missing one term.

Theorem 4.11 ([5, Theorem 3]). Suppose that A,B ⊆ Z/pZ are sets with
|A|, |B| ≥ 3. Suppose further that

7 ≤ |A+B| ≤ |A|+ |B| ≤ p− 4.

Then A and B are both almost progressions with the same common difference.

Corollary 4.9 and Theorem 4.11 are used to prove the following result; the
proof is rather technical and much of the additional work is due to fighting
over the −1’s from Cauchy-Davenport.

Lemma 4.12. If a small v 6= 0 works together with e, and the girth of v is
at least 8, then A0 is contained in an arithmetic progression of length at most
p

k−2 + 1.
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Proof. Our proof will fall into three cases, depending on the structure of A0

and 2A0.
Case 1: A0 is already an arithmetic progression. In this case, we may use

the upper bound of Proposition 4.5 to see that

|A0| <
p

k − 1
+ 1 <

p

k − 2
+ 1.

Thus, we may take the progression P to be A0, and it will already be of the
required length.

Case 2: A0 is not an arithmetic progression, but 2A0 is an almost progres-
sion. First, we will use (4.1) to obtain an upper bound on |2A0|. Indeed, one
application of Cauchy-Davenport tells us that |(k − 2)A0| ≤ p − |A|, and a
repeated application of Cauchy-Davenport gives that

k − 2

2
(|2A0| − 1) ≤ |(k − 2)A0|.

Since |A| > p/k by Proposition 4.5, this immediately tells us that

|2A0| <
2p(k − 1)

k(k − 2)
+ 1. (4.8)

Now, suppose without loss of generality that 2A0 is an almost progression with
common difference 1, which we will treat as a subset of Z in the natural way.
Say that the endpoints of 2A0 are −r and s, for r, s ≥ 0. In particular, −r
and s are both elements of 2A0.

We immediately obtain that

r + s = |2A0| ≤
2p(k − 1)

k(k − 2)
+ 1, (4.9)

since there is at most one element of [−r, s] missing from 2A0.
Now, we claim that A0 ⊆ [−br/2c , bs/2c]. Indeed, 0 ∈ A0, so for any

x ∈ A0, x+ 0 ∈ 2A0 ⊆ [−r, s]. Therefore, A0 ⊆ [−r, s].
However, if x ∈ A0, then 2x ∈ [−r, s]. If x ∈ [−r,−br/2c − 1], then

2x ∈ [−2r,−r − 1]. Because p − 2r > 2s ≥ s, which follows from (4.9)
and the fact that k ≥ 8, it follows that A0 does not meet [−r,−br/2c − 1].
A similar argument rules out [bs/2c + 1, s], and so it must be the case that
A0 ⊆ [−br/2c , bs/2c] as claimed.

Thus, A0 is contained in a progression of length at most br/2c+ bs/2c+ 1,
which is at most

r + s

2
+ 1 ≤ p(k − 1)

k(k − 2)
+

3

2
.

This will be no greater than p/(k− 2) + 1 provided that p ≥ k(k− 2)/2, which
follows from Lemma 4.10.

Case 3: 2A0 is not an almost progression. Our plan is to prove that A0

obeys the conditions (4.5) and (4.6). Again, we may use (4.1) and (4.2) to
show that |(k − 2)A0| ≤ p− |A| < p(k − 1)/k.

Observe that |2A0| ≥ 3 and |4A0| ≥ 7, both of which follow from the
assertion that |A0| ≥ 3 and the Cauchy-Davenport theorem. Furthermore,
|(k− 2)A0| ≤ p(k− 1)/k, which is less than p− 4 by Lemma 4.10 and the fact
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that k ≥ 8. Thus, we may apply the contrapositive of Theorem 4.11 (k− 4)/2
times to show that

|(k − 2)A0| ≥
k − 2

2
|2A0|+

k − 4

2
,

which, combined with our upper bound |(k − 2)A0| ≤ p − |A| < p(k − 1)/k,
gives

|2A0| ≤
2p(k − 1)

k(k − 2)
− k − 4

k − 2
. (4.10)

Now, we will first prove that A0 satisfies (4.6). Indeed, this is the case
provided that

2p(k − 1)

k(k − 2)
− k − 4

k − 2
≤ 17

42
p.

Since k ≥ 8, the left hand side is at most 7p/24, which is less than 17p/42.
It remains to prove that A0 satisfies (4.5). Suppose that this is not the case;

in other words,

|2A0| >
7

3
|A0| − 3. (4.11)

In view of (4.10) and Proposition 4.5, we deduce that

2p(k − 1)

k(k − 2)
− k − 4

k − 2
>

7

3

(p
k

+ 1
)
− 3.

Rearranging, this becomes

p

(
k − 8

3k(k − 2)

)
<

2

3
− k − 4

k − 2
.

However when k = 8 both sides of this are 0, and when k > 8 the left hand
side is positive and the right hand side is negative, which gives a contradiction.

Thus, A0 satisfies (4.5) and (4.6), and so we may apply Corollary 4.9. This
tells us that A0 is contained in an arithmetic progression with |2A0| − |A0| +
1 terms, and this is at most p/(k − 2) by Proposition 4.5 and the bound
(4.10). �

We are now ready to prove Proposition 4.7: if a small v 6= 0 works together
with e, then the girth of v is 4 or 6.

Proof of Proposition 4.7. Suppose that v is a vector with girth k that works
with e. Suppose further that k is not 4 or 6; this implies k ≥ 8 since k is even.

By Lemma 4.12, A0 is contained in an arithmetic progression of length at
most p

k−2 +1. Without loss of generality, we may assume A0 is contained in an
arithmetic progression P of common difference 1, and that both endpoints of P
are elements of A0. We will derive a contradiction by finding a bad subgraph.
We will split the proof into two cases depending on whether or not 0 is an
endpoint of P .

Case A: 0 is not an endpoint of P . We will treat the elements of P as
elements of Z in the natural way.

Let P = [−R, S], where R 6= S follows from the fact that A and −A are
disjoint. Without loss of generality, assume that that R < S. The bound
|P | ≤ p

k−2 +1 tells us that R+S ≤ p
k−2 . Let −r be the largest negative element
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of A0 and s be the smallest positive element of A0. Consider H = Gv[[−r, s]],
the subgraph of Gv induced on the interval [−r, s].

Each nonnegative vertex of H has an outgoing edge corresponding to −r,
and each nonpositive vertex of H has an outgoing edge corresponding to +s.
Consequently, each vertex of H has positive outdegree. In particular, H con-
tains a cycle C, which we may assume to be induced by taking the shortest
such cycle. In other words, Gv contains an induced cycle C contained in [−r, s].

If C is an odd cycle, then it is the required bad subgraph. Otherwise, C
must be even. Translate so that −r is the smallest element of C. We claim that
−r − S has exactly one outgoing edge pointing towards C, and no incoming
edges from C. Indeed, there is an edge directed from −r− S to −r because S
is assumed to be in A.

Now, the outgoing edges from −r−S go to −r− S +A, which is contained
in −r−S+[−R, S], and the incoming edges to −r−S come from −r−S−A,
which is contained in −r − S + [−S,R]. Because S > R, we have that

(−r − S + A) ∪ (−r − S − A) ⊆ −r − S + [−S, S],

and so there will be no other edges between −r − S and C provided that
(−r − S + [−S, S]) ∩ [−r, s] = {−r}.

To see that this is the case, observe that −r− S + [−S, S] = [−r− 2S,−r].
Working in Z/pZ, the intervals [−r − 2S,−r − 1] and [−r, s] will be disjoint
provided that p − r − 2S > s. This holds because r + s and S are both less
that p

k−2 <
p
3
.

Thus, there is exactly one outgoing edge from −r−S to C, and no incoming
edges from C to −r − S. This means that each vertex in C q {−r − S} has
outdegree 1, and so this is our required bad subgraph.

Case B: 0 is an endpoint of P . We will treat elements of P as elements of
[0, p] in the natural way. Let m = maxP , so m < p

k−2 .
We claim that any r with the property that m/2 ≤ r ≤ 3m/2 is the sum of

two elements of A0. Indeed, |A0| > p/k+1, so there are fewer than m−p/k−1
elements of P \ A0. However, given any r with m/2 ≤ r ≤ 3m/2, there are
at least m/4 disjoint pairs of elements of P which sum to r. Thus, if r is not
expressible as the sum of two elements of A, then it must be the case that

m

4
< m− p

k
− 1.

Since m < p/(k − 2) and k ≥ 8, this cannot happen.
Now, choose r with m/2 ≤ r ≤ 3m/2 so that p − r is divisible by m (this

is possible since there are at least m integers in the interval [m/2, 3m/2]), and
let r1 and r2 be two elements of A0 which sum to r. This gives two cases
depending on whether r1 and r2 are both nonzero or at least one is zero; we
prove only the first case, as the second is easier.

We write p = sm+ r1 + r2; since v has girth at least 8, we must have s ≥ 6.
If s is odd, then we have an odd induced cycle of length s+ 2 whose elements
are the partial sums of

m+ · · ·+m︸ ︷︷ ︸
s−1 terms

+r1 +m+ r2 = p.
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Note that the order of the elements is important, and that m is chosen (and
placed in between r1 and r2) such that the odd cycle

{0,m, 2m, . . . , (s− 1)m, (s− 1)m+ r1, sm+ r1}

is induced.
Otherwise, s is even. By a similar argument to the one used to show that

r is a sum of two elements of A0, we can deduce that m is the sum of two
elements of A; we write m = m1 + m2. This gives us an odd induced cycle of
length s+ 3, whose elements are the partial sums of

m+m1 +m+m2 +m+ · · ·+m︸ ︷︷ ︸
s−4 terms

+r1 +m+ r2 = p. �

5. Proof of main result

Suppose towards contradiction that there exists a prime p with primitive
root 2 for which h2(p) > 2. Then there are three vectors u, v, w ∈ Fp2 that are
linearly independent and work together. By Lemma 3.3, we may assume that
u = e. By Lemma 3.6 and Proposition 4.7, it must be the case that v and w
are non-symmetric vectors of girth 4 or 6. Recall that we call a vector u small
if there is no i for which ui = u−i = 1. By Lemma 4.3, we may assume v and
w are small (possibly replacing v or w with e + v or e +w). We can moreover
control the number of edges in the graphs Gv and Gw by Proposition 4.5.

Since v, w and e all work together, v+w must also work with e. Now, v+w
cannot be symmetric, else the fact that e, v and v + w work together would
contradict Lemma 3.6. To complete the proof of Theorem 1.2, we will divide
into cases depending on how many of v, w and v + w have girth 4 and how
many have girth 6. For this, we use a second graph-theoretic formulation of
the problem given in Proposition 5.2. We first need to establish that v + w is
also small.

Since Conjecture 1.3 has been verified by computer for all 3 ≤ n ≤ 43, we
can assume that either p > 43 or p = 7. A simple brute force search confirms
that h2(7) = 2, and so we can assume throughout this section that p > 43
(although a much weaker bound would suffice).

Lemma 5.1. Suppose that v, w ∈ Fp2 are small vectors such that v, w and e
work together. Then, the vector v + w must also be small.

As before, set A(v) = {i : vi = 1} and A
(v)
0 = A(v)q{0}, and define A(w) and

A
(w)
0 similarly. Since v and w are small, A(v) is disjoint from −A(v), and the

same holds for A(w).

Proof of Lemma 5.1. Suppose otherwise that v+w is large. Since v and w are
small, they must have girth at least 4, and so, by Proposition 4.5, A(v) and
A(w) have size at most bp/3c. Since A(v+w) = A(v)4A(w), A(v+w) must have
size at most 2 bp/3c, which means that |A(e+v+w)| ≥ p− 1− 2 bp/3c.

However, by assumption e + v +w is a small vector that works with e, and
so has girth at least 4. In particular, |A(e+v+w)| ≤ bp/3c.

Combining these two equations, we find that (p−1)/3 ≤ bp/3c, which implies
that, for some m ≥ 2, p = 3m+ 1 and |A(v)| = |A(w)| = |A(e+v+w)| = m.
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To rule out this special case, we will use Vosper’s Theorem to find the
structure of v and show that Gv has an induced 5-cycle, which contradicts
the assertion that v works with e. By two applications of Cauchy-Davenport,

|2A(v)
0 +A(v)| ≥ 3m. However, |2A(v)

0 +A(v)| ≤ 3m by (4.1). Therefore, equality
holds and, in particular,

|A(v)
0 + A(v)| = |A(v)

0 |+ |A(v)| − 1 = 2m ≤ p− 2.

Hence, we may apply Vosper’s Theorem to see that A
(v)
0 and A(v) are arithmetic

progressions with the same common difference; without loss of generality, the

common difference is 1, and A
(v)
0 = {0, . . . ,m}.

Now, we have an induced 5-cycle whose vertices are {0,m−1,m+1, 2m, 2m+
2}. Indeed, m− 1 and 2 are both elements of [m], and there will be no other
edges provided that 2m− 2 > m, which holds for p > 7. �

As with Proposition 4.1, we can rephrase our problem in terms of a graph
theoretical problem. Since v+w is small, there cannot be any edges that have
different directions in Gv and Gw. Thus, we may encode Gv and Gw in a single
graph G with vertex set Z/pZ using edges coloured with three colours. We do
this as follows.

• If there is an edge from i to i+j in both Gv and Gw (so j ∈ A(v)∩A(w)),
then draw a green edge from i to i+ j.
• If there is an edge from i to i+j in Gv but not in Gw (so j ∈ A(v)\A(w)),

then draw a red edge from i to i+ j.
• Finally, if there is an edge from i to i + j in Gw but not in Gv (so
j ∈ A(w) \ A(v)), then draw a blue edge from i to i+ j.

Thus, Gv consists of the red and green edges of G, and Gw consists of the blue
and green edges. Furthermore, Gv+w consists of the red and blue edges.

The relevance of G to our problem is given by the following proposition,
which is analogous to Proposition 4.1.

Proposition 5.2. If v, w ∈ Fp2 are two small vectors with v0 = w0 = 0, then
v, w and e work together if and only if there is no induced subgraph H of G on
an odd number of vertices such that, for each i ∈ H, the numbers of red, blue
and green outneighbours of i in H are not all of the same parity.

As with Lemma 4.2, the outdegrees can be replaced with indegrees. Thus,
for the remainder of the proof, we will call an induced subgraph H of G bad if

(1) H has an odd number of vertices and
(2) at least one of the following holds:

(a) for each vertex in H, the outdegrees in the three colours do not
all have the same parity;

(b) for each vertex in H, the indegrees in the three colours do not all
have the same parity.

In other words, Proposition 5.2 implies that v and w work together with e if
and only if G has no bad subgraphs.

Proof of Proposition 5.2. The vectors v, w and e fail to work together if and
only if there is a vector x for which any shift σkx is not orthogonal to at least
one of them. Let B = {i : xi = 1}.
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As shown in the proof of Proposition 4.1, we find that v · σ−kx = 1 if and
only if k has odd outdegree in Gv[B], and similarly with v replaced by w.

Thus, v, w and e fail to work together if and only if there is a subset B of
odd cardinality such that, for each k ∈ B, k has odd outdegree in at least one
of Gv[B] and Gw[B]. Since Gv consists of the red and green edges of G, the
outdegree of some k ∈ B is even in Gv[B] if and only if the number of red
and green outedges of k in G[B] has the same parity. The same statement
holds for w with red replaced by blue. Hence the statement that k has odd
outdegree in at least one of Gv[B] and Gw[B] is equivalent to the assertion
that the outdegrees of k in G[B] in the three colours are not all of the same
parity. �

Observation 5.3. For any colouring of the edges, a directed triangle is a bad
subgraph.

Let us write A for A(v) ∪ A(w) so there is an edge from i to i + j in G if
and only if j ∈ A. Let Agreen = A(v) ∩ A(w) (so there is a green edge from i
to i + j if and only if j ∈ Agreen) and similarly define Ared = A(v) \ A(w) and
Ablue = A(w) \ A(v).

Since v, w and v +w all work together with e, Proposition 4.7 tells us they
must each have girth 4 or girth 6. We will divide the remainder of the proof
into cases depending on how many of v, w and v + w have girth 4 and how
many have girth 6.

Lemma 5.4. Suppose that at least two of v, w and v + w have girth 4. Then
G has a bad subgraph.

Proof. Without loss of generality, we can assume that both v and w have
girth 4. By Proposition 4.5, |A(v)|, |A(w)| > p/4 and |A(v+w)| > p/6. Since
A(v+w) = A(v)4A(w), each element j ∈ A is in exactly 2 of A(v), A(w) and
A(v+w). Hence,

|A| = 1

2

(
|A(v)|+ |A(w)|+ |A(v+w)|

)
>

1

2

(p
4

+
p

4
+
p

6

)
=
p

3
.

Thus, the Cauchy-Davenport Theorem tells us that |2(Aq{0}) +A| ≥ p, and
in particular 0 is the sum of at most 3 elements of A. Thus, there is a cycle
of length at most 3 in G. There are no two-way edges in G, so G contains a
directed triangle. �

For the remaining two cases, we will require the following lemma.

Lemma 5.5. If G contains a 4-cycle which includes edges of all three colours,
then G contains a bad subgraph.

Proof. Suppose that G contains a 4-cycle which includes edges of all three
colours. Label a red edge r (so the edge is directed from some i to i+ r), label
a blue edge b, a green edge g and the final edge x. Since this proof doesn’t
use any properties of the individual colours, we can assume, without loss of
generality, that the edges are in the order r, g, b, x. We will consider subgraphs
induced on (subsets of) {0, r, g, b, r + g, r + b, b+ g, r + g + b}.
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0

r

g

b

r + g

r + b

b+ g

r + g + b

Figure 3. A rainbow 4-cycle implies the existence of a sub-
graph as depicted in the figure. The black edge can be coloured
either red, green or blue.

First, consider the subgraph H = G[{0, r, g, r + g, r + g + b}], as illustrated
by Figure 4. Observe that there can be no edge between 0 and r + g. If

0

r

g

r + g r + g + b

Figure 4. If none of the dotted edges are present, then the
depicted subgraph of G is a bad subgraph.

there were an edge from 0 to r + g, then {0, r + g, r + g + b} would induce a
directed triangle, and if there were an edge from r + g to 0 then {0, g, r + g}
would induce a directed triangle. In either case, we obtain a bad subgraph.
Similarly, there can be no edge between r+ g + b and either r or g. Thus, the
only possible edge that can be added is between r and g.

Now, observe that if there is no edge between r and g, then H is a bad
subgraph. In fact, the only way to stop H from being bad is to have a red
edge from g to r, or a green edge from r to g.

The same argument can be applied to subgraphs induced by {0, r, b, r+b, r+
g+ b} and {0, g, b, b+g, r+g+ b} to show that there is either a blue edge from
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0

r

b

r + g r + g + b

Figure 5. Vertex r has an even number of edges coming in for
each colour. If the dotted line is not an edge, then the depicted
subgraph is bad on outdegrees.

r to b or a red edge from b to r, and either a blue edge from g to b or a green
edge from b to g. If we take edges of all three colours, then {r, g, b} would
induce a directed triangle. Thus, one colour appears twice between pairs of
r, g and b; without loss of generality, that colour is red. We may hence assume
there are red edges directed from g and b to r.

Now, consider the subgraph H induced by the vertices {0, r, b, r+g, r+g+b},
as seen in Figure 5.

As before, the only edge that is undetermined is a possible edge between b
and r + g; such an edge cannot be directed from r + g to b, else {b, r, r + g}
induces a triangle.

If there is no edge from b to r + g, then H is bad. Indeed, H is bad unless
there is a red edge from b to r + g.

Finally, consider the subgraph induced on {0, b, g, r+g, r+b+g} as depicted
in Figure 6.

We know that there is an edge between b and g and that edge is either blue
or green. In both cases, this is the bad subgraph we sought. �

Lemma 5.6. Suppose that v, w and v+w all have girth 6. Then G has a bad
subgraph.

Proof. As in the proof of Lemma 5.4, we learn that |A| > p/4, and so, by 3
applications of the Cauchy-Davenport Theorem, G contains a cycle of length
at most 4. Since there can be no directed triangles (Observation 5.3), the girth
must be at least 4, so there is an induced 4-cycle C.

Suppose that C contains only red and green edges; then C is contained
entirely within Gv, contradicting the fact that v has girth 6. Therefore, C
must contain at least one blue edge. Similarly C must contain at least one red
edge and at least one green edge. Thus, C must contain all three colours, and
so we are done by Lemma 5.5. �

Lemma 5.7. Suppose that v and w have girth 6, and v+w has girth 4. Then
G has a bad subgraph.
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0

b

g

r + g r + g + b

Figure 6. There is no way to add an edge to the depicted
subgraph without creating a bad subgraph.

Proof. As in the proof of Lemma 5.6, since Gv and Gw do not contain a 4-cycle,
we find that there cannot be a 4-cycle in G with no blue edges or with no red
edges. Since there cannot be a 4-cycle with all three colours by Lemma 5.5, we
find that G cannot have a 4-cycle containing a green edge. Note that G can
also not contain an induced directed 3-cycle or 5-cycle, as such a subgraph is
bad.

By Proposition 4.5, p/4 < |A(v+w)| < p/3, and by Cauchy-Davenport

|3A(v+w)
0 + A(v+w)| ≥ min{p, 4|A(v+w)|} ≥ p.

Thus, 3A
(v+w)
0 +A(v+w) is the whole of Z/pZ. Consequently, for any g ∈ Agreen,

we can find a1, . . . , a4 ∈ A(v+w)
0 not all zero such that a1 + a2 + a3 + a4 = −g.

Note that −g 6∈ A(v+w) = Ared ∪ Ablue, so at least two of the ai are non-zero.
Exactly two non-zero ai corresponds to a directed 3-cycle, whereas exactly
three non-zero ai would correspond to a directed 4-cycle with a green edge,
both of which cannot exist by the observations above. We conclude that all ai
must be non-zero and that G contains a (non-induced) 5-cycle C with exactly
one green edge.

The cycle C must contain at least one red edge and at least one blue edge.
Indeed, suppose C doesn’t contain a red edge. Then C consists entirely of blue
and green edges and is contained in Gw, which contradicts our assumption that
the girth of Gw is 6. The argument that C contains a blue edge is identical.
Without loss of generality there are at least two red edges, so we may assume
that r = a1 ∈ Ared, r′ = a2 ∈ Ared and b = a3 ∈ Ablue. Set x = a4 ∈ Ared∪Ablue.

We will now consider subgraphs induced on (subsets of) {0, b, b+g, b+r, b+
g + r,−x} as in Figure 7.

First, consider H = G[{0, b, b + g, r + g + b,−x}]. Since G has no induced
5-cycles, there must be another edge present. As shown in Figure 8, there
are only two possible edges that can be added without creating a 3-cycle or a
4-cycle containing a green edge, from 0 to b+ g and from b to r+ g+ b. Since
{0, b, b + g, r + g + b,−x} is an odd-sized set, H will be bad unless there is a
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0

b b+ g

b+ r

r + g + b

−x

b

g

r

r

g

r′

x

Figure 7. If the graph G contains a 5-cycle, then we may as-
sume it contains the subgraph depicted.

0

b b+ g

r + g + b

−x

b

g

r

r′

x

Figure 8. The only edges that can be added to the subgraph
without creating a rainbow 4-cycle or a directed triangle are
depicted with dotted lines.

vertex for which the indegree has the same parity in every colour, and also a
vertex for which the outdegree has the same parity in every colour.

As we cannot add green edges without creating a 4-cycle with a green edge,
H will be bad because of indegree unless we have a red edge from b to b+g+r.
Similarly, H will be bad because of outdegree unless we have a blue edge from
0 to b+ g.

A similar analysis on {0, b, b + r, r + g + b,−x} shows us that there is a
red edge from b + r to −x, and so the only unknown edge is a possible edge
between b + g and b + r, as illustrated by Figure 9 (on the next page). We
make the following two claims:

(1) There must be either a red edge from b+ g to b+ r or a red edge from
b+ r to b+ g.

(2) There must be either a red edge from b+ g to b+ r or a blue edge from
b+ r to b+ g.
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0

b b+ g

b+ r

r + b+ g

−x

b

g

r

r

g

r′

x

r′ + g

Figure 9. The dotted line indicates the only place where we
might be able to add an edge to the subgraph.

0

b b+ g

b+ r

r + g + b

−x

b

g

r

r

r − g
g

r′

x

r′ + g

Figure 10. Starting from the 5-cycle depicted in Figure 8, we
show G either contains a bad subgraph or it contains the sub-
graph depicted in the figure.

To see the first claim, consider H = G[{0, b, b+g, b+r,−x}]. The only way that
H can have a vertex all of whose indegrees have the same parity is if there is a
red edge from b+g to b+r or a red edge from b+r to b+g. Similarly, the second
claim follows by considering the outdegrees of G[{0, b+ g, b+ r, b+ g+ r,−x}].

The only way both 1 and 2 can hold is if there is a red edge from b + g to
b+ r. In particular, r − g ∈ Ared.

Thus, given a 5-cycle b+ r+ g+ r′+ x = 0, we get that r− g and r′+ g are
red, and b + (r − g) + g + (r′ + g) + x = 0 is also a 5-cycle. We may iterate
this argument to see that each element of the sequence r, r− g, r− 2g, . . . will
be red. However, p is prime, which means that the sequence will hit every
element of Z/pZ. This yields the required contradiction, and so G must have
a bad subgraph. �
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Lemmas 5.4, 5.6 and 5.7 combine to show that regardless of the girths of v
and w, G must have a bad subgraph, and so v and w cannot work together
with e. This completes the proof of Theorem 1.2.

6. Generalisation to arbitrary finite fields

We will now investigate hq(n), the maximal codimension of a cyclically cov-
ering subspace in Fnq , for q a prime power. We consider this problem in the
orthogonal complement in an analogous way to the case q = 2: we say that a
vector v ∈ Fnq works if for every x ∈ Fnq there is a k ∈ {0, . . . , n− 1} such that

v · σkx = 0, and that the vectors v(1), v(2), · · · , v(m) work together if for every
x ∈ Fnq there exists a k such that

v(1) · σkx = v(2) · σkx = · · · = v(m) · σkx = 0.

As before, hq(n) is given by the largestm for which there exist v(1), v(2), . . . , v(m)

that are linearly independent and work together.
The following result is an analogue of Theorem 2.1, and can be proven by

replacing 2 with q in the proof of Theorem 2.1.

Theorem 6.1. Let q be a prime power. For all m,n ∈ N, hq(mn) ≥ hq(m) +
hq(n).

Theorem 2.3 generalises as follows.

Theorem 6.2. Let p be a prime, and let q be a power of p. Then hq(pn) ≤
phq(n).

To prove Theorem 6.2, we use the following lemma.

Lemma 6.3. Let p be a prime, and let q be a power of p. Suppose that f is a
polynomial of degree at most p− 1 over Fq. Then

p−1∑
x=0

f(x) =

{
0 deg f < p− 1

−cp−1 deg f = p− 1,
(6.1)

where cp−1 refers to the leading coefficient of f when f has degree p− 1.

Proof. Lemma 6.3 will follow from the special case of monomials. If f is
constant, then clearly

∑
x f(x) = pf(0) = 0. If f(x) = xr for some 0 < r <

p− 1, then let ω ∈ Z/pZ be a primitive root. Then,∑
x

xr =
∑
x

(ωx)r = ωr
∑
x

xr,

where the first equality follows from the fact that multiplying by ω is a bijection
on (Z/pZ)×. Thus (ωr−1)

∑
x f(x) = 0, and so

∑
x f(x) = 0 as ω is a primitive

root. Finally, observe that
∑

x x
p−1 =

∑
x 6=0 1 = p− 1. �

Proof of Theorem 6.2. Given a vector v ∈ Fpnq , we will define its degree as
follows. For i ∈ {0, . . . , n− 1} and v ∈ Fpnq , let

πi(v) : Fp → Fq
j 7→ vnj+i.
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Any function taking Fp to Fq can be written uniquely as the restriction to Fp
of a polynomial of degree at most p− 1 over Fq. Let di be the degree of πi(v).
The degree d of v is defined as d = maxi di.

Suppose that V ⊆ Fpnq is the vector space spanned by hq(np) vectors that
are linearly independent and work together. For d ∈ {0, . . . , p−1}, let Vd ≤ V
be the subspace consisting of all vectors of degree at most d. Since every vector
has degree at most p− 1, we immediately get that Vp−1 = V .

Then, Theorem 6.2 will follow from the following claim.

Claim. If V−1 is defined to be the trivial subspace, then for each 0 ≤ d ≤ p−1,
dimVd ≤ dimVd−1 + hq(n).

Proof of Claim. Suppose that v(1), . . . , v(r) are vectors in Vd that extend a
basis of Vd−1 to a basis of Vd; thus, r = dimVd − dimVd−1. We must prove
that r ≤ hq(n).

For t ∈ [r], define w(t) ∈ Fnq such that w
(t)
i is the coefficient of Xd in the

polynomial corresponding to πi(v
(t)). We claim that w(1), . . . , w(r) are linearly

independent and work together, proving r ≤ hq(n).
We first show they work together. Let x ∈ Fnq . We must prove that there is

a shift k such that w(t) · σkx = 0 for each t ∈ [r].
Define the vector y ∈ Fpnq by ynj+i = jp−1−dxi, for i ∈ {0, . . . , n − 1} and

j ∈ {0, . . . , p − 1}. Since the v(t) work together, there must be a shift k with
the property that v(t) · σky = 0 for all t ∈ [r]. By definition,

0 = v(t) · σky =
n−1∑
i=0

p−1∑
j=0

v
(t)
nj+iynj+i−k.

Now, we will prove that

p−1∑
j=0

v
(t)
nj+iynj+i−k = −w(t)

i xi−k (6.2)

for each t ∈ [r], where the index of xi−k is taken modulo n.
To prove this, note that by definition of w(t), we may write

v
(t)
nj+i = (π

(t)
i (v))(j) = w

(t)
i j

d + f(j)

where f is some polynomial of degree at most d−1. There is a unique λ ∈ Z/pZ
with the property that, for each j ∈ {0, . . . , p− 1},

nj + i− k = n(j + λ) + `,

where ` ∈ {0, . . . , n− 1} satisfies ` ≡ i− k mod n. This gives that ynj+i−k =
xi−k(j + λ)p−1−d, and thus

p−1∑
j=0

v
(t)
nj+iynj+i−k =

p−1∑
j=0

(
w

(t)
i j

d + f(j)
)
xi−k(j + λ)p−1−d

= −w(t)
i xi−k

by Lemma 6.3.
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It follows that

0 = −v(t) · σky =
n−1∑
i=0

w
(t)
i xi−k = w(t) · σkx,

for each t ∈ [r]. This proves that the w(t) work together.
It remains to show that the w(t) are linearly independent. Suppose otherwise;

then, there must exist a linear relation
r∑
t=1

λtw
(t) = 0

for some λt ∈ Fq not all zero.
By definition, this means that each πi(

∑r
t=1 λtv

(t)) : Fp → Fq has the coeffi-
cient of Xd equal to zero, and thus has degree at most d− 1. In other words,∑r

t=1 λtv
(t) ∈ Vd−1, contradicting the assertion that the v(t) extend a basis of

Vd−1. ♦

Applying the claim, we conclude that

hq(pn) = dimV =

p−1∑
d=0

(dimVd − dimVd−1) ≤ phq(n). �

Since the cyclic shifts of a subspace U ≤ Fnq can only cover at most |U | · n
vectors in Fnq , if U is cyclically covering, we must have |U | ≥ qn/n. This
implies dim(U) = logq(|U |) ≥ n− logq(n), and hq(n) ≤ logq(n). In particular,
for n < q we have hq(n) = 0, and this gives the following corollary of Theorem
6.2.

Corollary 6.4. Let p be prime, and let q be a power of p. Then hq(`p
d) = 0

for any ` < q.

Remark. In Theorem 6.2, we require that the characteristic of the field Fq is
the same p as in the bound. For example, h3(2n) ≤ 2h3(n) fails for n = 4.
Indeed, observe that h3(4) = 0 (as noted in [2]), whereas h3(8) = 1 follows
from [2, Theorem 5].

For q > 2, we have the following stronger version of Theorem 1.2.

Theorem 6.5. Suppose that q is an odd prime, and p > q is a prime with q as
a primitive root. Then hq(p) = 0; in other words, there are no nonzero vectors
v ∈ Fpq that work.

Remark. It is known by a result of Heath-Brown [6] that for all but at most
two primes q, there are infinitely many primes p such that q is a primitive
root of p. In particular, we know unconditionally that for all but two primes
q, hq(n) does not tend to infinity among n coprime to q. It is widely believed
that there are no primes q that are primitive roots for only finitely many p; if
this were true, we would know that hq(n) does not tend to infinity for any q
(among n coprime to q).

Proof. Suppose that v ∈ Fpq is nonzero. We consider the polynomial fv ∈
Fq[X]/(Xp − 1) which corresponds to a vector v, after making the natural
modifications to the definition given in Section 3. An analogue of Proposition
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3.1 holds over Fq, with the same proof. Thus, v works if and only if, for every
x ∈ Fpq , there is a k such that the coefficient of Xk in fvfx is 0. That is v fails
to work if and only if there exists x such that fvfx has no zero coefficients. In
other words, v fails to work if and only if fv is a factor of a polynomial with
no zero coefficients.

Since q is a primitive root for the prime p, the analogue of Lemma 3.2 tells
us that Xp − 1 factors into irreducible polynomials as

Xp − 1 = (X − 1)(1 +X + · · ·+Xp−1).

Then we can write

Fq[X]

(Xp − 1)
=

Fq[X]

(X − 1)
⊕ Fq[X]

(1 +X +X2 + · · ·+Xp−1)
.

Suppose fv is non-zero in Fq[X]/(Xp − 1). Write a ∈ Fq[X]/(X − 1) for fv
mod X−1 and b ∈ Fq[X]/(1+X+ · · ·+Xp−1) for fv mod 1+X+ · · ·+Xp−1.
The assertion that fv is nonzero is then equivalent to the assertion that either
a or b is nonzero.

Suppose first that a is nonzero. Since Fq[X]/(X − 1) is a field, there is
an inverse a−1 for a. Let c = 1 + X + · · · + Xp−1 mod X − 1, and let g ∈
Fq[X]/(Xp−1) denote the polynomial that is ca−1 mod X−1 and 0 mod 1+
X + · · · + Xp−1. Thus, fvg is c mod X − 1 and 0 mod 1 + X + · · · + Xp−1,
and so is equal to 1+X+ · · ·+Xp−1 mod Xp−1. In particular, fv is a factor
of 1 +X + · · ·+Xp−1.

On the other hand, suppose that a is zero. Then b must be nonzero, and
a similar argument shows that fv is a factor of X − 1. Thus, any nonzero
polynomial in Fq[X]/(Xp − 1) is a factor of either X − 1 or 1 + · · ·+Xp−1.

Now, 1 + · · ·+Xp−1 itself has no coefficient equal to zero. Also, X − 1 is a
factor of

(X − 1)(Xp−2 +Xp−4 + · · ·+X − 1) = 1− 2X +X2 +

p−1∑
i=3

(−X)i,

which also has no coefficient equal to zero.
Thus, any nonzero polynomial is a factor of a polynomial with no coefficient

equal to zero, and so any nonzero vector does not work. �

7. Conclusion

Let ordp(2) denote the order of 2 in (Z/pZ)×. We have shown that h2(p) ≤ 2
for all Artin primes p, where Artin primes are exactly the primes satisfying
ordp(2) = p− 1. It would be interesting to see whether h2(p) is still small if p
is “almost” an Artin prime. For example, is there a function f : N → N such

that h2(p) ≤ f
(

p−1
ordp(2)

)
?

Since we now know 2 appears infinitely often in the multiset {h2(n) : n ∈ N}
(assuming Artin’s conjecture is true), another interesting direction for future
work is to see which other numbers appear infinitely often.

Problem 7.1. For which k ∈ N are there infinitely many n such that h2(n) =
k?
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The lower bound in Theorem 2.1 suggests that one might at least expect
there to be infinitely many such k. Indeed, a bound on h2(3n) which is only a
function of h2(n) would suffice for this. To this end we propose the following
problem.

Problem 7.2. For which k ∈ N is there a function fk : N → N such that
h2(kn) ≤ fk(h2(n)) for all n ∈ N?

From our results, it follows that h2(an) → ∞ whenever the number of odd
prime factors of an tends to infinity. Our computer searches show that the
sequence h2(3 · 2n) begins 1, 2, 3, 3, but we are unable to determine for which
n we have h2(3 · 2n) < h2(3 · 2n+1). It would be interesting to determine
for which x we have h2(2x) > h2(x). We are not even able to determine if
h2(3 ·2n)→∞ as n→∞, and more generally, we pose the following question.

Problem 7.3. For which k ∈ N do we have h2(k · 2n)→∞?

We remark that we also leave open our own conjecture that the only vectors
that work with e are the symmetric vectors (Conjecture 1.3). We have verified
that Conjecture 1.3 holds for all odd n with 3 ≤ n ≤ 43, if 7 - n. In the case
that n = 7, there are precisely 12 non-symmetric vectors v that work with e.
The first of these is the example v = (0, 1, 1, 0, 0, 0, 0) given in Observation
3.10, and the other 11 can derived from this by scaling by non-zero ` (in other
words, replacing xi by x`i for every i), replacing v with v+e, and combinations
of the two. For n = 21 and n = 35, the only non-symmetric vectors v that
work with e may be constructed from the n = 7 case in a systematic way.

Finally, the following problem posed by Cameron, Ellis and Raynaud [2], to
which we have shown some partial progress, remains very interesting.

Problem 7.4. For which n is hq(n) = 0?
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Appendix A. Known bounds on h2(n) for small n

The following two theorems of Cameron, Ellis and Raynaud provide several
exact values of h2(n).

Theorem A.1 ([2, Theorem 5]). If q is a prime power and d ∈ N, then
hq(q

d − 1) = d− 1.

Theorem A.2 ([2, Theorem 8]). Let q be a prime power, and let k, d ∈ N such

that gcd(d+ 1, qk − 1) = 1. Set n =
∑d

r=0 q
kr = qk(d+1)−1

qk−1 . Then hq(n) = kd.

In addition, we make use of the following bounds.

Theorem A.3 ([2, Lemma 4]). For q a prime power and n ∈ N, we have
hq(n) ≤

⌊
logq(n)

⌋
.

Theorem A.4 ([2, Lemma 2]). For odd positive integers n > 3, we have
h2(n) ≥ 2.

Combining these results with our results and brute force calculations, we
obtain the lower bounds ` and upper bounds u on h2(n) for small values of n
given in Table 1.
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n (`, u) Reason for ` Reason for u

1 (0,0)

2 (0,0) Theorem 2.3

3 (1,1) Theorem A.2 Theorem A.3

4 (0,0) Theorem 2.3

5 (2,2) Theorem A.2 Theorem 1.2

6 (2,2) Brute force Theorem 2.3

7 (2,2) Theorem A.2 Theorem A.3

8 (0,0) Theorem 2.3

9 (3,3) Theorem A.2 Theorem A.3

10 (2,2) Theorem 2.1 Brute force

11 (2,2) Theorem A.4 Theorem 1.2

12 (3,3) Brute force Theorem A.3

13 (2,2) Theorem A.4 Theorem 1.2

14 (3,3) Brute force Theorem A.3

15 (3,3) Theorem A.2 Theorem A.3

16 (0,0) Theorem 2.3

17 (4,4) Theorem A.2 Theorem A.3

18 (3,3) Theorem 2.1 Brute force

19 (2,2) Theorem A.4 Theorem 1.2

20 (3,3) Brute force Brute force

21 (3,4) Theorem 2.1 Theorem A.3

22 (2,4) Theorem 2.1 Theorem 2.3

23 (3,3) Brute force Brute force

24 (3,3) Theorem 2.1 Brute force

25 (4,4) Theorem 2.1 Theorem A.3

26 (2,4) Theorem 2.1 Theorem 2.3

27 (4,4) Theorem 2.1 Theorem A.3

28 (3,4) Theorem 2.1 Theorem A.3

29 (2,2) Theorem A.4 Theorem 1.2

Table 1. The upper and lower bounds on h2(n) we are aware of,
along with their respective sources, are given for n ∈ {1, . . . , 29}.
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