
In�nite induced-saturated graphs

Marthe Bonamy1, Carla Groenland∗2, Tom Johnston3, Natasha Morrison†4, and Alex Sco�‡5

1CNRS, LaBRI, Université de Bordeaux, France.
2Del� Institute of Applied Mathematics, TU Del�, the Netherlands.

3University of Bristol, United Kingdom and Heilbronn Institute of Mathematical Research, United
Kingdom.

4Department of Mathematics and Statistics, University of Victoria, Canada.
5Mathematical Institute, University of Oxford, United Kingdom.

June 16, 2025

Abstract

A graph G is H-induced-saturated if G is H-free but deleting any edge or adding any
edge creates an induced copy of H . �ere are various graphs H , such as P4, for which no
�nite H-induced-saturated graph G exists. We show that for every �nite graph H that
is not a clique or stable set, there always exists a countable H-induced-saturated graph.
In fact, a stronger property can be achieved: there is an H-free graph G such that G′
contains a copy of H whenever G′ 6= G is obtained from G by deleting and adding edges
so that only a �nite number of changes have been made incident to any vertex.

1 Introduction
For a �nite graph H , let PH be the collection of graphs that do not contain H as an induced
subgraph (also known as the class of H-free graphs). In this paper, we study how “unstable”,
“fragile” or “isolating” this property can be in the following sense:

Is there a graph G ∈ PH such that G′ 6∈ PH for every graph G′ 6= G which is “close to” G?

One natural de�nition of “close” is to say that G is close to G′ if G′ can be obtained from G by
disturbing a single pair of distinct vertices u, v ∈ V (G): if uv is an edge in G, we delete it, and
if it is not an edge, we add it. For our main result, we allow for even stronger disturbances in
the structure of G. A locally �nite disturbance of G is a graph obtained from G by disturbing
arbitrarily many (at least one) pairs under the constraint that for any vertex v, the number of
disturbed pairs involving v is �nite. Our main result is the following.

�eorem 1. Let H be a �nite graph. �en there exists a countably in�nite H-free graph GH

such that every locally �nite disturbance of GH has an induced copy of H if and only if H is not
a clique or a stable set.

∗Research supported by the Dutch Research Council (NWO, VI.Veni.232.073)
†Research supported by NSERC Discovery Grant RGPIN-2021-02511
‡Research supported by EPSRC grant EP/W015404/

1

Figure 1: �e depicted graph (the complement of the icosahedral graph) is induced-saturated
for P5.

�e special case of individual disturbances has been previously studied. A graphG is called
H-induced-saturated if G has no induced subgraph isomorphic to H but deleting any edge or
adding any edge creates an induced copy of H . Our main result directly implies the following
statement about induced-saturated graphs.

Corollary 2. For any �nite graph H which is not a clique or stable set, there is a countably
in�nite H-induced-saturated graph GH .

Finite induced-saturated graphs and variations on this have been studied extensively in
recent years (see e.g. [1, 2, 6, 10, 12, 15, 18, 20]). It is immediately clear that there is no
(�nite or in�nite) H-induced-saturated graph when H is a clique or a stable set (except on
those on two vertices), and one of the �rst results on induced-saturated graphs showed that
there is no �nite P4-induced-saturated graph [15]. �is result can also be shown by noting
that every �nite P4-free graph (on at least two vertices) contains two vertices that are twins1

(where u and v may be adjacent or not). Disturbing the pair uv does not create a copy of P4

in this case, and so the resulting graph is still P4-free. A�er some partial progress [6, 18, 20]
by various authors, Dvořák [10] showed Pt-induced-saturated graphs exist for all t ≥ 6. It
is straightforward to show there are Pt-induced-saturated graphs for t = 2, 3, so the only
path remaining was P5. �e authors found examples of P5-induced-saturated graphs shortly
a�erwards using a computer search [3], one of which is shown in Figure 1. �is means that a
�nite Pt-induced-saturated graph exists if and only if t 6= 1, 4.

�e motivation behind the study of induced-saturated graphs stems from a long history of
research concerning “saturated” graphs, initiated by Erdős, Hajnal and Moon [11]. A graph is
said to beH-saturated if it contains no subgraph isomorphic toH and the addition of any edge
creates such a subgraph. Note that, in contrast to the induced se�ing, removing an edge can
never create a subgraph. It is easy to construct anH-saturated graph: start from a �nite graph
without an H subgraph (for example, the empty graph) and keep adding edges as long as the
chosen edge does not create a subgraph isomorphic to H . If there are no more edges that can
added, the graph must be H-saturated. With the question of existence straightforward, the
minimum and maximum number of edges in saturated structures is studied instead. See the
comprehensive survey of Currie, Faudree, Faudree and Schmi� [7] for an extensive literature
review on saturation in graphs and related variants.

Although not directly related, our work bears some similarity to the research of universal
elements. Given a class G of countable graphs, a universal element is a graph U ∈ G that
contains all graphs from G as subgraph. For the class of all countable graphs, such a universal

1Say vertices u and v are twins if every vertex w 6∈ {u, v} is adjacent to u if and only if it is adjacent to v.
�ey are called true twins if uv ∈ E and false twins otherwise.

2

element exists (o�en named a�er Rado [17]). �e existence of such objects has been studied
for various families of countable graphs, including planar graphs and graph classes excluding
a particular subgraph (see e.g. [8, 9, 13, 16]). �e universal element U of the class of all count-
able graphs is also ultrahomogeneous: every isomorphism between �nite substructures of U
is a restriction of an automorphism of U . Lachlan and Woodrow [14] completely classi�ed
the countable ultrahomogeneous graphs. �ere have been various similar classi�cations of
homogeneity in countable discrete structures [4, 5, 19].

In the remainder of the section, we illustrate the key ingredients in the proof of �eorem 1.
We �rst describe how one might hope to deal with individual disturbances in the context of
Corollary 2 before discussing how this can be adapted to handle locally �nite disturbances.
�e formal proof of �eorem 1 is fully described in the later sections and does not rely on the
informal discussion which makes up the remainder of this section.

1.1 P4 and �xing operations
�e case of P4-free graphs is particularly interesting as there is no �nite P4-induced-saturated
graph.

We �nd an in�nite P4-induced-saturated graph G by considering a sequence (Gi)i∈N of
graphs and taking its limit. �e idea is to keep track of a list of pairs which are “bad”, in the
sense that disturbing them does not create a copy of P4. We obtain Gi+1 from Gi by a�aching
a gadget that “�xes” the next bad pair in the list without creating a copy of P4. We then update
the list by adding the bad pairs involving a new vertex to the end of the list. �e construction
for P4 is as follows.

�e �xing operation for a bad edge xy is to add a false twin to each of x and y, and the
�xing operation for a bad non-edge xy is to add a true twin to each of x and y. Since P4 has no
twins, adding a twin can never create an induced copy of P4. Moreover, in the resulting graph
disturbing the pair {x, y} indeed creates a P4. �e sequence (Gi)i∈N of graphs is obtained by
considering an arbitrary P4-free graph, computing a list of its bad pairs, then obtaining Gi+1

from Gi by �xing its �rst bad pair and updating the list of bad pairs.
We give an example below (see also Figure 2). Let G1 be an edge on vertices u1, u2. Dis-

turbing u1u2 results in a P4-free graph, hence u1u2 is a bad edge in G1. �e list of bad pairs
in G1 is {{u1, u2}}. We de�ne G2 as the graph obtained from G1 by adding a false twin v1
to u1 and a false twin v2 to u2. Disturbing the edge u1u2 in G2 now creates an induced P4,
therefore the pair {u1, u2} is �xed in G2. However, now disturbing the non-edge u1v1 results
in a P4-free graph. �e bad pairs in G2 are precisely {{u1, v1}, {u2, v2}}. We de�ne G3 as the
graph obtained from G2 by adding a true twin w1 to u1 and a true twin x1 to v1. �is �xes the
pair {u1, v1} and the bad pairs in G3 are {{u2, v2}, {u1, w1}, {x1, v1}}.

u2

u1

u2

u1

v2

v1

u2

u1

v2

v1

x1

w1

Figure 2: A sequence of graphs G1, G2, G3, . . . is obtained by repeatedly applying a �xing
operation. �e red edges and red non-edges are not �xed.

We note that in the above construction, for any i, for any bad pair {x, y} of a graph Gi,
there is an index j such that disturbing {x, y} in Gj (or any subsequent graph) yields an

3

induced P4. In other words, any bad pair is ultimately �xed. �erefore, there is a countably
in�nite P4-free graph GP4 such that disturbing any pair in GP4 results in an induced copy of
P4: Corollary 2 is true for H = P4 and, more generally, for any graph H that admits �xing
operations for bad pairs.

1.2 C5 and gatekeepers
�e �xing operations for P4 de�ned above rely heavily on the strong structural properties of
P4-free graphs. Since we need to prove Corollary 2 for every graph H that is not a clique
or stable set, we will need something much more general. �e naı̈ve way to de�ne a �xing
operation for H is by gluing a copy of H − e with the missing edge aligned with the bad non-
edge (or a copy ofH+ewith the extra edge aligned with the bad edge). While this is a sure-�re
way to guarantee that disturbing the bad pair will result in an induced copy of H , the pitfall
is that the gluing might create a copy of H . One may hope to avoid this by choosing carefully
which edge to add or delete in H , but this may not always be possible (consider H = P4).

However, for H = C5, this is a good approach (see Figure 3). To �x a bad non-edge xy,
we may glue C5 − e by adding three vertices u1, u2, u3 and four edges xu1, u1u2, u2u3, u3y.
Note that the resulting graph isC5-free, as every induced copy ofC5 involving some new edge
would involve all of them. Similarly, to �x a bad edge xy, we may glue C5 + e by adding three
vertices u1, u2, u3 and �ve edges xu1, u1y, xu2, u2u3, u3y. It is not hard to see that the resulting
graph is also C5-free. �is idea does not just work for C5, but in fact works for many graphs,

y

x

u3

u1

u2
y

x

u3

u1

u2

Figure 3: �e �xing operation for non-edges (le�) and edges (right) is depicted. �e blue
vertices represent newly created vertices.

including every 3-connected graph H that is not a clique. Indeed, if we “�x” the pair {x, y}
in a similar fashion to Figure 3, then {x, y} forms a 2-cut in the resulting graph between the
“old” and “new” vertices. If H is 3-connected, then it cannot contain vertices of both types so
no new copies of H can be created. �is proves Corollary 2 for any 3-connected graph H .

We now formalise what makes C5 and 3-connected graphs (but not P4) behave well. An
edge uv in a graph H is a gatekeeper if for any H-free graph G, gluing a copy of H − uv
on a non-edge of G results in an H-free graph. A similar de�nition holds for non-edges. We
say H admits a gatekeeper of each type if it contains both an edge and a non-edge that are
gatekeepers.

A graphH that admits a gatekeeper of each type admits a �xing operating for bad edges as
well as for bad non-edges, using the naı̈ve approach described above. Note that a path contains
no edge that is a gatekeeper.

1.3 C5 with a leaf and cores
Unfortunately, even small modi�cations to a graph can make a graph which is much harder
to handle. For example, consider the graph obtained from C5 by adding a pendant edge to
one of the vertices. While we easily found �xing operations for C5 using gatekeepers, this
new graph does not admit gatekeepers of either type. Instead, we focus on the C5 and work

4

within the class of C5-free graphs. If we work within this class, we can use the gatekeepers
for C5 and not create a copy of C5 or of our target graph. �ese gatekeepers are not quite
enough to guarantee a disturbance creates a copy of C5 plus a leaf, but this is easily solved by
adding a leaf to every vertex we add. Note that the leaves cannot be in a C5, so this is a valid
modi�cation. We now formalise and extend this idea using the notion of cores.

�e 2-core H∗ of a �nite graph H is obtained by iteratively removing vertices of degree at
most 1. Crucially, if we take a graph G which is H∗-free, then adding a leaf to each vertex of
G does not create a copy of H∗ let alone H , nor does adding an isolated vertex. Given a �xing
operation for H∗, we can create a �xing operation for H as follows. �roughout the process,
we maintain that the graph created so far is H∗-free. We interchange �xing operations forH∗
with steps that either add a leaf to each vertex or add an isolated vertex. Since every bad pair
is eventually �xed by the �xing operation for H∗, if we disturb a pair then we can embed a
copy of H∗. We can extend our copy of H∗ into a copy of H as we have added in�nitely many
leaves and isolated vertices.

�erefore, if a graphH∗ admits �xing operations, any graphH whose 2-core isH∗ admits
�xing operations. We can generalise this notion by iteratively deleting any vertex with at most
k neighbours or at most ` non-neighbours.

In particular, the 3-core H∗ of a graph H is obtained by iteratively removing vertices of
degree at most 2. By the discussion above, Corollary 2 holds for a graph H if its 3-core is 3-
connected. We are also done when the complementH ofH is 3-connected: the complement of
an H-induced-saturated graph is H-induced-saturated. When H has a 2-cut and both “sides”
contain at least three vertices, then H is close to having a 3-connected 3-core. However, there
is one “bad” 2-cut to take into account, depicted in Figure 4.

Figure 4: A “bad” 2-cut is shown. No such cuts are present in the 3∗-core.

We de�ne the 3∗-core of a graph H as the graph obtained from H by iteratively removing
vertices of degree at most 2, as well as true twins of degree 3 (“bad” 2-cuts). As before, �xing
operations for a graph H∗ can be extended to any graph H whose 3∗-core is H∗. If a graph
H has a non-empty 3∗-core, then either the 3∗-core of H or the 3∗-core of H is 3-connected.
�ere is a small catch: the 3∗-core could be a clique and this will give a few more cases to
handle.

1.4 Outline of the proof
We can now give a broad overview of the steps in our proof. �e proof will be given formally
in Section 6.6.

• We give a �xing operation for all H whose 3∗-core is 3-connected and not a clique.
�e reader should already be able to verify this for the weaker Corollary 2 from the
discussion above. We provide the stronger statements needed for �eorem 1 in Section 3.

• We give a �xing operation for all H whose 2-core is a K1,1,p or K2,p and a direct con-
struction for all forests with a unique vertex of maximum degree in Section 5.

5

• We prove a structure theorem (�eorem 10) that shows that for all �nite graphs H on at
least 12 vertices, either H or its complement falls into one of the above categories. �is
is done in Section 4.

• We provide direct constructions for speci�c graphs H on at most 7 vertices in Section 6.
• We use a computer to check that for all graphs H on at most 11 vertices, either H or its

complement falls into one of the above categories. �is is detailed in Section 6.3.

1.5 From individual disturbances to locally �nite disturbances
For Corollary 2, we only need to generate a copy of H when we make a single disturbance:
we either turn an edge into a non-edge or vice versa. For �eorem 1, we allow many pairs to
be disturbed at once, and the arguments above no longer directly apply.

We describe one common way in which we show that a pair has been �xed. A�er a locally
�nite disturbance, we show how to embed H vertex-by-vertex. Suppose that we already em-
bedded h1, . . . , hs. If there are in�nitely many options from which to choose the next vertex
hs+1, then there is always an option for which the adjacencies to h1, . . . , hs have not been
altered by the locally �nite disturbance. Indeed, for each hi, there are only �nitely many v
so that {hi, v} has been altered. One way to generate in�nitely many options is to blow up
vertices into in�nite cliques. �is does not always work, since it may create a copy ofH . More-
over, it also creates new edges to be “�xed”. Nevertheless, the di�erence between allowing a
single disturbance or allowing any locally �nite disturbance is reasonably small in most of
our proofs. In some places, it does require additional insights, such as for 3-connected graphs
(handled by Lemma 3).

�ere is one additional issue that comes up when we prove our stronger variant. Assume
that a graphH admits �xing operations as in Section 1.1. For Corollary 2, we start from a �nite
graph, and �xing a pair adds �nitely many vertices, hence �nitely many new bad pairs. Each
graph of the sequence is �nite, and new bad pairs can simply be added to the end of the list
of existing bad pairs. However, in the proof of �eorem 1, we add countably in�nitely many
vertices to �x a single bad pair, thus possibly in�nitely many new bad pairs. Adding bad pairs
to the “end” of an in�nite list of existing bad pairs is not well-de�ned. In the proof of Lemma
17 we explain how to carefully schedule the �xes.

2 Notation and de�nitions
�e word “graph” in this paper allows for in�nite graphs, but the vertex set is always required
to be countable. When we search for a (strongly) H-induced-saturated graph, H will always
refer to a �nite graph. We only consider simple graphs (without self-loops, directed edges or
parallel edges).

A clique is a set of vertices that are pairwise adjacent and a stable set is a set of vertices
that are pairwise non-adjacent. A connected graphG = (V,E) is k-connected if the graph has
at least k+1 vertices and remains connected a�er removing any k− 1 vertices. For graphs G
and H , we say that G is H-free if G does not contain H as induced subgraph.

Write N(v) for the neighbourhood of v, that is, the set of vertices adjacent to v, and write
N [v] = N(v) ∪ {v} for the closed neighbourhood. We say two vertices u, v are true twins if
N [u] = N [v] and false twins if N(u) = N(v) (and so u and v are not adjacent). Write uv to
denote a pair of vertices {u, v} with u 6= v. Write Pt for the path on t vertices and Kt for the
complete graph on t vertices.

6

v

u

z

y

v′

u′

v

u

z

y

Figure 5: An example is given on how two graphs can be glued on non-edges {u, v} and
{u′, v′}.

�e de�nitions below are similar to those in the introduction, but now formally stated in
full generality.

Locally �nite disturbance For a pair of distinct vertices u, v ∈ V (G), disturbing the pair
uv is the operation which removes uv from E(G) if it is present and adds it if it is not present.
A locally �nite disturbance of G is a graph obtained from G by disturbing arbitrarily many
pairs (at least one, possibly in�nitely many) under the constraint that for any vertex v, the
number of disturbed pairs involving v is �nite.

Strongly saturating For a �nite graph H , say a graph G is strongly H-induced-saturated if
G does not contain H as an induced subgraph, but any locally �nite disturbance of G does.
Note that the very notion of strongly H-induced-saturated requires G to be in�nite. We say
that G is H-induced-saturated if G does not contain H as an induced subgraph, but a copy of
H is created when an edge is added to G or removed from G.

Fixed and un�xed edges Say a pair xy in a graph G is un�xed (for H) if there is a locally
�nite disturbance which disturbs the pair xy and does not result in an induced copy of H .
Otherwise we call the pair �xed (for H). Note that a graph G is strongly H-induced-saturated
if and only if all pairs of G are �xed for H .

Gluing Given two graphsG andG′ on disjoint vertex sets withA ⊆ V (G) andA′ ⊆ V (G′),
and a bijection f : A′ → A, the graph G′′ obtained from gluing G′ on G along f has V (G′′) =
V (G) ∪ V (G′) \ A′ and uv ∈ E(G′′) for distinct u, v ∈ V (G′′) if and only if

1. uv ∈ E(G),
2. uv ∈ E(G′),
3. u ∈ A and f−1(u)v ∈ E(G′), or
4. u, v ∈ A and f−1(u)f−1(v) ∈ E(G′).

We will most commonly apply this operation for A = {u, v}, A′ = {u′, v′} and f(u) =
u′, f(v) = v′. An example of this is given in Figure 5.

Fixing operations We will sometimes need to maintain the stronger property that the
graph is not just H-free but that it also does not contain a copy of some core of H . For this
reason, we de�ne a �xing operation relative to a class of graphs, as follows.

Given a class of graphs F , we say the �nite graph H admits an edge �xing operation (resp.
non-edge �xing operation) for F if for every G ∈ F and every edge (resp. non-edge) xy of G,
there exists a graph G′ obtained from gluing a graph onto G such that

• G′ ∈ F , and

7

• any locally �nite disturbance of G′ which disturbs xy contains a copy of H .
Crucially,G is an induced subgraph ofG′. We sayH admits a �xing operation forF if it admits
both an edge �xing operation and a non-edge �xing operation. We show in Lemma 17 that
if H admits a �xing operation for a non-empty class F of H-free graphs, then there exists a
strongly H-induced-saturated graph.

Gatekeepers An edge (resp. non-edge) uv in a graph H is a gatekeeper if for any H-free
graph G, gluing a copy of H − uv on a non-edge (resp. edge) of G results in an H-free graph.

Cores Given a graphH , the (k, `)-core is the graph obtained by iteratively removing vertices
which have fewer than k neighbours or less than ` non-neighbours. We write k-core to refer
to the (k, 0)-core.

�e 3∗-core of a graph H is obtained by iteratively removing vertices which have at most
2 neighbours and removing pairs uv of vertices with |N [u] ∪N [v]| ≤ 4.

3 Graphs with a 3-connected core
In this section we prove �eorem 1 in the case where H has a 3-connected 3∗-core which is
not a clique.

In order to handle locally �nite disturbances (rather than single edge disturbances), we will
need the following result. Given a graph H with a pair of distinct vertices uv, we de�ne the
in�nite graph Huv→c (resp. Huv→s) as the graph obtained from H by disturbing the pair uv
and then blowing up every vertex other than u and v into an in�nite clique (resp. stable set).
When we blow up a vertex v into an in�nite clique (or stable set), we replace the vertex v by
new vertices inducing an in�nite clique (or stable set) and add edges from all of new vertices
to all of the vertices that used to be adjacent to v.

Lemma 3. Let H be a �nite graph which is not a clique or stable set. �en H has an edge uv
such that one of Huv→c and Huv→s contains no induced copy of H .

Proof. First, suppose that uv is an edge inH such that neither u nor v has a true twin. We will
show thatHuv→c contains no induced copy ofH . Note that the property of being true twins is
an equivalence relation and contracting the equivalence classes gives a graphH ′ which has no
true twins. �is leaves the vertices u and v unchanged as they have no true twins. Note that
H ′ is an induced subgraph of H so if there is an induced copy of H in Huv→c, then there must
be a copy of H ′ as well. Since H ′ has no true twins, every vertex of H ′ must be in the blow-up
of a di�erent vertex in Huv→c. But Huv→c is the same as the graph obtained by blowing up
each vertex ofH ′−uv (instead ofH−uv) except for u and v into an in�nite clique. So a copy
of H ′ in Huv→c gives an induced copy of H ′ in H ′ − uv, a contradiction.

A similar argument shows that if neither u and v contain a false twin, the graph Huv→s

contains no induced copy of H .
Next, we argue that a vertex v cannot have both a true twin x and a false twin y. Indeed,

x is adjacent to v, so y should also be adjacent to x (since v, y are false twins). But y is not
adjacent to v so x should not be adjacent to y. �is gives a contradiction.

So we may and will assume that for each edge ab of H , either a has a false twin and b a
true twin, or vice versa (as otherwise we are done). �is means we can partition the vertices
of H into three sets, a set A of vertices with a true twin, a set B of vertices with a false twin
B and a set C of vertices with neither a true twin nor a false twin. Since for each edge ab of

8

H , either a has a false twin and b a true twin, or vice versa, edges can only go between A and
B. In particular, there are no edges in A. But any vertex in A must have an edge to its true
twin in A so A is empty. But then there are no edges at all in our graph, contradicting our
assumption that H is not a stable set.

Since the complement of a stable set or clique is again a stable set or clique, we immediately
get the following corollary by taking complements.

Corollary 4. For every non-trivial �nite graphH , there is a non-edge uv such that one ofHuv→c

and Huv→s contains no induced copy of H .

We next repeat two simple, but important, observations.

Observation 5. Let H be a �nite 3-connected graph and let G and G′ be two graphs which are
H-free. Let G′′ be obtained by gluing the graphs G and G′ together along either an edge or a
non-edge xy. �en G′′ is H-free.

Indeed, any copy ofH would need to contain both a vertex u ∈ V (G)\{x, y} and a vertex
v ∈ V (G′) \ {x, y}, but we can disconnect u and v in G′′ by removing the vertices x and y.
�is gives a vertex cut of H of size 2, contradicting the assumption that H is 3-connected.
In the terminology introduced above, the observation says that any two vertices in H are
gatekeepers.

Observation 6. Let H be a �nite graph with a pair of distinct vertices uv. �en, for G′ ∈
{Huv→c, Huv→s}, any locally �nite disturbance of G′ which disturbs uv contains a copy of H .

We repeat the argument here for completeness. �e disturbance brings the pair uv to the
same status it had in H ; since the disturbance is locally �nite, we can embed a copy of H
vertex-by-vertex, as follows. We send u, v in H to u, v in G′ respectively. We then iterate
through the remaining vertices of H and map each vertex to one of the vertices in the blow-
up of this vertex in G′. �ere are in�nitely many options in each blow-up, so at least one
of these vertices is not incident with the �nite number of disturbances incident to the �nite
number of vertices we have embedded so far, and we map h to any such vertex.

We can now de�ne our �xing operation and will then extend this to handle cores.

Lemma 7. If H is a �nite graph which is 3-connected and not a clique, then H admits a �xing
operation for the class of H-free graphs.

Proof. Suppose that H is a �nite 3-connected graph and we are given an H-free graph G and
an un�xed edge xy of G. By Lemma 3, we may assume that H has an edge uv such that there
is a graphG′ ∈ {Huv→c, Huv→s} that isH-free. LetG′′ be the graph formed by gluing together
G and G′ along the edge xy of G and the edge uv of G′. By Observation 5, the graph G′′ is
H-free. Any locally �nite disturbance of G′′ which disturbs xy contains a copy of H using
vertices from G′ by Observation 6. So indeed xy is �xed in G′′.

�e �xing operation for non-edges xy is analogous but relies on Corollary 4 instead of
Lemma 3.

Next, we provide a technical lemma which allows us to extend the �xing operations to
cores. Operations 3 and 4 will only be needed for graphsH on at most 11 vertices in Section 6.
We write δ(G) for the minimum degree of the graph G and degG(v) for the degree of vertex
v ∈ V (G) in G.

9

Lemma 8. Let H and C be �nite graphs such that H admits a �xing operation for the class of
C-free graphs. Let H ′ be obtained from H via one of the following operations:

1. adding a new vertex with at most k < δ(C) neighbours, or

2. adding a new vertex with at most ` < δ(C) non-neighbours, or

3. if δ(C) ≥ 2 and C has no vertex v with degC(v) = 2 and two non-adjacent neighbours,
adding a new vertex adjacent precisely to two non-adjacent vertices of H ,

4. if δ(C) ≥ 2 and C has no vertex v with degC(v) = 2 and two adjacent neighbours, adding
a new vertex adjacent precisely to two adjacent vertices of H , or

5. if C is 3-connected and not a clique, adding a pair of adjacent new vertices onto H that are
both adjacent to the same two vertices of H .

�en H ′ also admits a �xing operation for the class of C-free graphs.

Proof. �roughout this proof, we start with a C-free graph G0 and we assume that the pair
xy is un�xed. Moreover, we assume H admits a �xing operation, so in particular there is a
C-free graph G obtained by gluing a graph onto G0, such that any locally �nite disturbance
of G which disturbs the pair xy contains a copy of H .

Suppose �rst that H ′ is obtained from H by adding a vertex w to H with neighbours
v1, . . . , vk ∈ H , with k < δ(C). For each choice of k vertices (u1, . . . , uk) from G, we add an
in�nite stable set fully connected to the vertices (u1, . . . , uk). Let G′ be the resulting graph,
which is by de�nition obtained by gluing a graph ontoG, and so can also be obtained by gluing
a graph onto G0. Crucially, all vertices in V (G′) \V (G) have degree k < δ(C) and so none of
them can be present in a copy of C . Since G is C-free, G′ must also be C-free. It remains to
show that the pair xy is now �xed. Any locally �nite disturbance inG′ which disturbs xy must
create a copy of H using solely vertices of G. Let u1, . . . , uk be the vertices in this copy that
perform the roles of v1, . . . , vk in H . In G′, there is an in�nite stable set S which is adjacent
to exactly u1, . . . , uk, and for each vertex in the copy of H , only a �nite number of edges to S
have been modi�ed. Hence there is a vertex s ∈ S for which none of the edges to this copy
have been modi�ed and this provides us with a copy of H ′ in G′. Hence H ′ admits a �xing
operation for the class of C-free graphs.

A similar argument applies when H ′ is obtained by adding ` < δ(C) non-neighbours
v1, . . . , v` to H : we repeat the “complement” of the argument above, adding an in�nite clique
which is adjacent to all vertices except for u1, . . . , u` (for each collection of ` distinct vertices).

If δ(C) ≥ 2 and every degree 2 vertex has adjacent neighbours, then we also follow a
similar construction. Let H ′ be the graph obtained from H by adding a new vertex w adjacent
to non-adjacent vertices v1, v2 in H . Let G′ be obtained from G by adding, for each pair uu′
of non-adjacent vertices in G, an in�nite stable set adjacent to u and u′. Again, G′ can be
obtained by gluing a graph onto G0. No copy of C can use the vertices from V (G′) \ V (G),
since each vertex in C must have degree 2, and if it has degree 2, the neighbours must be
adjacent. A copy of H ′ is created a�er a locally �nite disturbance of the edge xy in G′ for the
same reason as above. For the fourth operation (when δ(C) ≥ 2 and the neighbours of degree
2 vertices are always are non-adjacent) we analogously glue an in�nite stable set to pairs of
adjacent vertices of G instead.

Finally, suppose that C is 3-connected and not a clique. Suppose moreover that H ′ is
obtained by adding a pair u, v of adjacent new vertices onto H that are both adjacent to the
same two vertices a, b of H , that is, N ′H [u] = N ′H [v] = {a, b, u, v}.

We �rst handle the case in which ab 6∈ E(H) and C is a clique minus an edge, as this
requires a di�erent construction. Since C is 3-connected, we must have |V (C)| ≥ 5. For each

10

choice of a′, b′ from G for which a′b′ 6∈ E(G), we add two in�nite stable sets to G which
are fully connected to each other and to a′, b′, and for a′b′ ∈ E(G), we add an in�nite clique
connected to a′, b′. If C is any other 3-connected graph which is not a clique, then for each
choice of a′, b′ from G, we add an in�nite clique connected to a′, b′. Let G′ be the resulting
graph.

We argue again that G′ is C-free, which follows the “gatekeeper” idea from the introduc-
tion. Suppose towards a contradiction that G′ contains a copy C ′ of C . We �rst argue that C ′
must be contained in {a′, b′} union the new vertices we just glued onto G. Since G is C-free
andC is non-empty,C ′ needs to use at least one vertex x′ ∈ V (G′)\V (G). Let a′, b′ denote the
pair of vertices inG that x′ is adjacent to, and suppose thatC ′ also contains x ∈ V (G)\{a′, b′}.
�en {a′, b′} forms a 2-cut in G′ separating x′ from x, and hence separating x from x′ in C ′.
�is contradicts the assumption that C is 3-connected. Hence, C ′ ∩ V (G) ⊆ {a′, b′}.

When a′b′ ∈ E(G), then C ′ is contained in a clique, a contradiction as C is not a clique.
When a′b′ 6∈ E(G) and C is a clique minus an edge, the graph C ′ is contained in a tri-partite
graph, which is not possible either as C contains a copy of K4. Hence, G′ is C-free as desired.

�e graph G′ is again obtained by gluing a graph onto G0 and we also repeat a similar
argument to show the pair xy has been �xed. Any locally �nite disturbance in G′ which
disturbs xy must create a copy of H using solely vertices of G. Let a′, b′ be the vertices in this
copy that perform the role of a, b in H . Suppose �rst that in G′, there is an in�nite clique S
which is adjacent to exactly a′, b′. We �rst pick a vertex x′ ∈ S for which none of the edges to
a′, b′ have been modi�ed. Next, we pick another vertex y′ ∈ S for which none of the edges to
a′, b′, x′ have been modi�ed. Together with x′, y′, the copy of H becomes a copy of H ′ in the
locally �nite disturbance. �e other case is whenC is a clique minus an edge and a′b′ /∈ E(G′),
in which case we glued on two in�nite stable sets fully adjacent to a′, b′ and each other instead.
We choose x′ from the �rst stable set for which none of the edges to a′, b′ have been modi�ed
and then y′ from the second such that none of the edges to x′, a′, b′ have been modi�ed.

Hence H ′ admits a �xing operation for the class of C-free graphs.

If the 3∗-core C of H is 3-connected and not a clique, then in particular it has minimum
degree at least 3. �is means that we can obtain H from C by repeatedly adding vertices
of degree at most 2 < δ(C) or adding pairs of adjacent vertices as in the statement of the
lemma above. So starting from Lemma 7 and then repeatedly applying Lemma 8, we obtain
the following corollary.

Corollary 9. Let H be a �nite graph with 3∗-core (or 3-core) H ′ which is 3-connected and not a
clique. �enH admits a �xing operation for the class ofH ′-free graphs. In particular, there exists
a strongly H-induced-saturated graph.

We will also use Lemma 8 below in Section 5.

4 A characterisation of the remaining graphs
�e goal of this section is to prove the following result.

�eorem 10. For any �nite graphH on at least 12 vertices, either the graphH or its complement
H satis�es one of the following statements.

• H is a clique.

• H is a forest with a unique vertex of maximum degree.

11

• �e 2-core of H is K2,p or K1,1,p for some p ≥ 3.

• �e 3∗-core of H is 3-connected and not a clique.

Each of these cases will be handled separately in the proof of �eorem 1.
Before we present the proof of �eorem 10, we give a few auxiliary results. We say a graph

H has a bu�er�y cut if we can partition its vertex set as V (H) = A t U t B such that there
are no edges between A and B, |U | ≤ 2 and |A|, |B| ≥ 3.
Observation 11. If H has a bu�er�y cut, then H contains K3,3 as a subgraph.

Indeed, we can �nd the copy of K3,3 with the two parts of the bipartition contained in A
and B respectively.
Lemma 12. If a �nite graph H has at least 12 vertices, then either H or H has a 3-connected
subgraph on at least 5 vertices.

Proof. Note that K3,3 is a 3-connected subgraph on at least 5 vertices. So if H has a bu�er�y
cut, then we are done by Observation 11. We are also done if H is 3-connected.

So we may assume that there is a cut U1 of size at most 2 in H and that we can partition
V (H) = A1 t U1 t B1 with 1 ≤ |B1| ≤ 2 such that there are no edges between A1 and B1.
Since |A1| ≥ 8, we may assume H[A1] is not 3-connected. Again H[A1] must contain a cut U2

of size at most 2 and we can assume it contains no bu�er�y cut. Hence, we can �nd a partition
A1 = A2 t U2 tB2 with 1 ≤ |B2| ≤ 2 such that there are no edges between A2 and B2 in H .
�en |A2| ≥ 4. If |A2| = 4, then |B1| = |B2| = 2 and H[A2 ∪B1 ∪B2] contains the complete
3-partite graph K4,2,2, which is 3-connected. So we may assume |A2| ≥ 5. We are again done
if H[A2] is 3-connected, so we can split once more into A2 = A3 t U3 t B3 with |A3| ≥ 2
and |B3| ≥ 1. Now H[A3 ∪ B1 ∪ B2 ∪ B3] contains the 3-connected subgraph K2,1,1,1 (the
complete 4-partite graph with part sizes 2, 1, 1 and 1).
Lemma 13. If a �nite graph H contains an induced subgraph on at least 5 vertices that is 3-
connected and not a clique, then the 3∗-core of either H or H is 3-connected and not a clique.

Proof. Let H be a �nite graph with an induced subgraph S on at least 5 vertices that is 3-
connected and not a clique. �e 3∗-coreH3∗ ofH containsS, and is hence not a clique. Suppose
that H3∗ is not 3-connected. �en there is a partition V (H3∗) = A t U tB with |U | ≤ 2 and
no edges between A and B. Since S is 3-connected, we may assume that V (S) ⊆ A∪U . �is
implies that H[A] contains at least one non-edge and that |A| ≥ 3. We will show that the
3∗-core of H is 3-connected.

Since B is part of the 3∗-core of H , it must be the case that |B| ≥ 3. �us H3∗ [A ∪ B] is
3-connected and, due to the non-edge in H[A], it is not a clique. Consider the set of vertices
R = V (H) \ V (H3∗) that we removed from H to form the 3∗-core of H . We can iteratively
add these back in (in clusters of size at most 2) to H[A ∪ B]. When a cluster is added, it has
edges to all but at most two of the existing vertices (and in particular degree at least 4 since
|A|+ |B| ≥ 6). Hence, H[A ∪ B ∪ R], which is not a clique, is 3-connected and contained in
the 3∗-core of H . Since |U | ≤ 2, the last two vertices in U cannot form a separate component
in the 3∗-core of H . It follows that the 3∗-core of H is 3-connected and not a clique.

Proof of �eorem 10. Let H be a �nite graph on n ≥ 12 vertices. Let H0 be the largest 3-
connected subgraph ofH . By Lemma 12, we may assume the size ofH0 is at least 5 (switching
fromH toH if necessary). IfH0 is not a clique, then we are done by Lemma 13. So we assume
that H0 is a clique. By the maximality of H0, any u 6∈ H0 is adjacent to at most 2 vertices in
H0. We �rst handle the special case where H consists of at most two vertices plus the clique
H0, in which case |H0| ≥ 10.

12

• If there are no additional vertices, then H is a clique, which is one of our possible con-
clusions.

• Suppose there is one additional vertex u1. Note that d(u1) ≤ 2, since V (H) = {u1} t
V (H0). �us H is a star (centred at u1) with at most two isolated vertices. Since the
centre of the star is a vertex of unique maximum degree, this is one of the possible
conclusions.

• Suppose that there are two additional vertices u1 and u2. Both have at most two edges
to H0. �e 2-core of H equals K2,p or K1,1,p for some p ≥ |H0| − 4 ≥ 6, depending on
whether there is an edge between u1 and u2 or not.

We may now assume that |V (H) \ V (H0)| ≥ 3. Let A = V (H0) and B = V (H) \ V (H0),
and note that |A| ≥ 5 and |B| ≥ 3. We will show that H has a 3-connected induced subgraph
with at least 5 vertices which is not a clique so, by Lemma 13, the 3∗-core of either H or H is
3-connected and not a clique.

Since each b ∈ B has at most 2 edges toA inH , it has at least |A|−2 edges toA inH . �is
means that H contains a (not necessarily induced) bipartite subgraph H ′ = (A,B,E) with
|A|+ |B| = 12, with |A| ≥ 5 and |B| ≥ 3, and such that each element ofB has exactly |A|−2
neighbours in A. A computer search shows that there is indeed a 3-connected subgraph on
at least 5 vertices in every such bipartite graph. Clearly, the corresponding vertices induce
a 3-connected subgraph of H (as this only has more edges than the subgraph of the H ′) and
the subgraph is not a clique as it must contain at least 3 vertices of A and these form an
independent set in H .

5 �e remaining large graphs
We now turn our a�ention to the graphsH satisfying the second or third property of �eorem
10, a�er which we will have proved �eorem 1 for all graphs H on at least 12 vertices.

5.1 Fixing operations for K2,p

�e �xing operation for K2,p is relatively simple.

Lemma 14. Suppose the 2-core of H is a copy of K2,p where p ≥ 3. �en H admits a �xing
operation for the class of K2,p-free graphs.

Proof. By Lemma 8, we only need to show that there is a �xing operation for K2,p: indeed, H
can be obtained from K2,p by repeatedly adding vertices of degree at most 1 < δ(K2,p).

Let G be a K2,p-free graph. Suppose �rst that xy is an un�xed edge. To �x the edge xy,
add an in�nite stable set where every vertex is connected to both x and y. �is is equivalent
to gluing on a copy of K1,1,∞ and any locally �nite disturbance which removes the edge xy
gives a copy of K2,p. It remains to check that we did not create a copy of K2,p. Suppose that a
newly added vertex v is in a copy of K2,p. Any newly added vertex is only adjacent to x and
y and so both x and y must be in the copy of K2,p. However, then the copy of K2,p contains a
triangle, giving a contradiction.

Suppose next that xy is an un�xed non-edge. Add a vertex w which is adjacent to x but
not to y, and then add p− 1 vertices w1, . . . , wp−1 adjacent to both w and y. Finally, we blow
up the (new) vertices w,w1, . . . , wp−1 into in�nite cliquesW,W1, . . . ,Wp−1. All vertices inW
and y are adjacent to all vertices inWi for i ∈ [p−1]. It is not hard to see that any locally �nite
disturbance which adds the edge xy creates a copy of K2,p. In fact, there is some w′ ∈ W and

13

w′i ∈ Wi for i ∈ {1, . . . , p− 1} such that {y, w′} ∪ {x,w′1, . . . , w′p−1} forms a copy of K2,p. It
remains to show that we have not introduced a copy of K2,p. Let u and v be the two vertices
of K2,p with p neighbours, and consider which vertices could be u in a copy of K2,p. Since
the p neighbours of u form a stable set, u 6∈ Wi for every i as the neighbours of w′i ∈ Wi can
be decomposed into 2 cliques and p ≥ 3. A vertex w′ ∈ W only has enough neighbours that
form a stable set if x is among the neighbours and there is a vertex from each Wi, but then we
cannot choose a suitable v. �e only other way a copy of K2,p could contain one of the added
vertices is for u and v to be x and y, but we have not added any common neighbours of x and
y. So we did not create any copies of K2,p and indeed we �xed the non-edge.

5.2 Fixing operation for K1,1,p

�e edge �xing operation for K1,1,p is more involved and requires an additional assumption
about the graphs it is applied to.

Lemma 15. Suppose the 2-core of H is a copy of K1,1,p where p ≥ 2. �en H admits a �xing
operation for the class of K1,1,p-free graphs where the common neighbourhood of any un�xed
edge can be decomposed into at most p− 2 cliques.

Proof. We maintain throughout that the common neighbourhood of any un�xed edge can be
decomposed into at most p − 2 cliques. For p = 2, this means that if the edge uv is un�xed,
then N(u) ∩ N(v) = ∅. We discuss how to de�ne a �xing operation for K1,1,p then explain
how to extend to graphs with this as a 2-core.

We �rst handle the case p = 2, as it is simpler and serves as a warm-up to the case p ≥ 3.
First note that any edge in an in�nite clique is �xed, as disturbing it will result in an induced
copy of K1,1,2 even if this is part of an arbitrary locally �nite disturbance. Given an un�xed
edge uv ∈ E, we �x it by adding a countably in�nite clique completely adjacent to both u
and v. Since u and v have no common neighbours before the �xing operation, this does not
create an induced copy of K1,1,2. Given an un�xed non-edge uv 6∈ E, we �x it by adding a
countably in�nite stable set completely adjacent to both u and v. Note that every new edge,
though un�xed, is incident to a vertex of degree 2 which is not in a triangle, so the endpoints
have no common neighbour.

Assume now p ≥ 3. We �rst explain how to �x an edge uv ∈ E. We �x an in�nite tree T
in which a particular vertex r has degree 1 and all other vertices have degree p− 1. We blow
up all vertices except for r into an in�nite clique. We blow up r into an edge and glue this
onto uv.

We �rst show that this �x keeps the graph K1,1,p-free. For an edge xy, when x and y
correspond to di�erent vertices of T , their common neighbourhood can in be decomposed
into a single clique. In particular, they cannot be used as the pair of vertices of degree p+1 of
any copy of K1,1,p.

When x and y correspond to the same vertex of T , their common neighbourhood can be
decomposed into p − 1 cliques; this holds for x = u, y = v using our assumption that the
common neighbourhood of u, v could originally be covered by at most p − 2 cliques, and for
other pairs using the degree of T . �is shows that we did not create any copy of K1,1,p since
no pair among the new vertices, u and v can be used as the vertices of degree p+ 1.

Next, we show that all edges x and y with x, y corresponding to the same vertex of T have
been �xed (this includes the edge uv). Consider a locally �nite disturbance in which xy gets
removed. Let sp be the vertex in T that x, y correspond to and let t 6= r be a neighbour of sp
in T . Let s1, . . . , sp−2 denote the other neighbours of t in T . �ere must be in�nitely many

14

vertices in the blow-up of t that are still adjacent to x and y a�er the disturbance. We may pick
any two of them, say a and b. Next, we select for each i ∈ [p − 2], a vertex wi resulting from
the blow-up of si, such that {a} ∪ {b} ∪ {w1, . . . , wp−2, x, y} forms the desired copy of K1,1,p.
Note that we can indeed do so since each of a, b, x, y prohibits only �nitely many options.

�e new un�xed edges are the ones which correspond to di�erent vertices of T , and indeed
have the common neighbourhood property that we wish to maintain, since their common
neighbourhood can be decomposed into a single clique (so at most p− 2 since p ≥ 3).

�e �xing operation for a non-edge is far simpler. Indeed, let u, v be an un�xed non-edge.
We add an in�nite stable set with neighbourhood {u, v}. �is ensures that any locally �nite
disturbance containing the pair u, v results in an induced K1,1,p. Note that the graph resulting
from the �xing operation is still K1,1,p-free and the common neighbourhood of every edge is
either una�ected by the �xing or is empty, so the �xing operation for non-edges maintains all
the desired properties.

To extend the �xing operations above to graphs for which the 2-core is K1,1,p for p ≥ 2,
we unfortunately cannot directly apply Lemma 8 (due to the property about the common
neighbourhoods). However, we may repeat the proof and note that by gluing in�nite stable
sets fully connected to at most one vertex, we not only maintain the property of being K1,1,p-
free, but also the property that un�xed edges have no stable set of size p− 1 in their common
neighbourhood.

5.3 Forests with a vertex of unique maximum degree
Let F be a �nite forest which has a unique vertex of maximum degree d > 1 that we denote
by v. One easy way of preventing a graph G from containing a copy of F is to ensure it has
maximum degree strictly less than d. Unfortunately, removing an edge from G is not going to
increase the maximum degree and create a copy of F , so we need to be slightly smarter. Since
F is a forest, the neighbourhood of any vertex is a stable set and, instead of simply restricting
the maximum degree, we can ensure that no vertex in G has a neighbourhood containing a
stable set of size d.

We de�ne the graph Kp
∞ as the in�nite graph with vertex set Zp and an edge between a

vertex u = (u1, . . . , up) and vertex v = (v1, . . . , vp) if and only if they disagree in exactly one
coordinate i.e. there is a unique i such that ui 6= vi. �e maximum degree is unbounded, but
the neighbourhood of any vertex can be decomposed into p cliques, one for each coordinate,
and the largest stable set in the neighbourhood of any vertex is of size p. We claim that Kd−1

∞
is strongly F -induced-saturated.

Lemma 16. Let F be a �nite forest with a unique vertex of maximum degree d. �e graph Kd−1
∞

is strongly F -induced-saturated.

Proof. As argued above,Kd−1
∞ does not contain F since the largest stable set in any neighbour-

hood is smaller than the maximum degree in F . It remains to show that making any locally
�nite edit creates an induced copy of F .

We �rst consider the case in which F is a tree. Let v be the unique vertex of maximum
degree and suppose we remove an edge. Without loss of generality, let the edge be from
(1, 0, . . . , 0) to (2, 0, . . . , 0). �ere must exist an integer iv such that (iv, 0, . . . , 0) is still con-
nected to both (1, 0, . . . , 0) and (2, 0, . . . , 0). Here we will embed our vertex v. Similarly,
there are integers j3, . . . , jd such that a�er the locally �nite edit, there are still edges from
(iv, 0, . . . , 0) to

(iv, j3, 0, . . . , 0), (iv, 0, j4, . . . , 0), . . . , (iv, 0, 0, . . . , jd)

15

and the vertices displayed above together with (1, 0, . . . , 0), (2, 0, . . . , 0) form a stable set. We
embed the d neighbours of v into this stable set of size d.

We now explore the tree, heading out from v and assigning each vertex to a vertex in
Zd−1 as we go. Suppose we have reached the vertex u = (u1, . . . , ud−1) which disagrees
with the previous vertex in coordinate i. �ere are at most d′ ≤ d − 1 neighbours of u, say
w0, w1, . . . , wd′−1, and we have already seen one of them, say w0. We must assign to each
wj with j ∈ [d] a vertex in Zd−1. First choose d′ − 1 distinct coordinates p1, . . . , pd′−1, none
of which are equal to i, and set wj to be equal to u except in position pj . For position pj ,
we choose an integer which ensures that wj is not adjacent to any of the vertices we have
embedded except for u. Since at each step, there are only �nitely many “bad integers” to
choose out of in�nitely many, we can always select an appropriate one.

Adding an edge can be handled similarly: we embed v into an endpoint x of the edge and
note that the added edge again makes it possible to embed the d neighbours of v as a stable
set in the neighbourhood of x.

For arbitrary forests F , let T be the connected component of F which contains the unique
vertex of maximum degree. We showed above that any locally �nite edit creates a copy of T .
All other connected components of F have maximum degree at most d− 1. A�er embedding
T , it is straightforward to embed the other components in Kd−1

∞ in a way that there are no
edges to the vertices used for T .

5.4 Scheduling the �xes
�e following lemma is straightforward but important. A key part of the proof is that any bad
pair is �xed in a �nite number of steps. �is ensures every bad pair is �xed in the limit.

Lemma 17. Suppose that a �nite graph H admits a �xing operation for a non-empty class of
H-free graphs. �en there exists a strongly H-induced-saturated graph.

Proof. We de�ne a sequence of graphs G1 ⊆ G2 ⊆ . . . in F and we de�ne the graph G as
∪∞i=1Gi.

Let G1 ∈ F . We keep track of a set F of pairs that need to be �xed with a priority order
(described later in this proof), which is initialised as the (countable) set of un�xed pairs in G1.
Suppose we have de�ned Gi ∈ F for some integer i ≥ 1. If all pairs xy ∈ Gi are �xed, we
may set Gt = Gi for all t ≥ i and G = Gi is our desired graph. Otherwise, let xy ∈ Gi be
an un�xed pair of highest priority in F . We let Gi+1 be the graph obtained from applying the
�xing operation for this pair.

We now describe how to de�ne the priority order in such way that every bad pair is even-
tually �xed. For any step i, let Bi be the collection of bad pairs in Gi that do not exist in Gi−1.
We �x a bijection fi : N→ Bi. We order the �xes fi(j) �rst by increasing i + j, and then by
increasing j. �at is, fi(j) < fi′(j

′) if i+ j < i′ + j′, or if i+ j = i′ + j′ and j < j′. �e �rst
seven elements are given by

f1(1), f2(1), f1(2), f3(1), f2(2), f1(3), f4(1).

�is total order will indicate the priority of the �xes: at any point, we perform next the �x of
highest priority among those that involve a pair of vertices both existing in the current graph.
Note that if a high priority �x involves a vertex that is created late in the graph sequence, it
is possible that “lower priority” �xes have been implemented �rst. In a sense, priority had
just been pre-allocated for it. However, if a bad pair (u, v) is such that both u and v belong to
V (Gi), and fi(k) = uv, then it will be �xed before step (i+ k)2.

16

By de�nition of a �xing operation for xy, if Gi ∈ F , then Gi+1 ∈ F and the pair xy is
�xed in Gi+1. Moreover, any pair which was �xed in Gi remains �xed in Gi+1 since Gi is an
induced subgraph of Gi+1. By pu�ing the priority order on F , we ensure that for any pair xy
in G, there is a �nite i such that xy is a �xed pair in Gi, so in particular xy is a �xed pair in G.

Since no copy of H can be created in Gi for all i, G is also H-free. �is proves that G has
the desired properties.

6 �e remaining small graphs
In this section we consider graphs on at most 11 vertices. While many of these graphs can be
handled using the lemmas and theorems above, there are still several small graphs which we
still need to consider. To this end, we introduce two new constructions to handle families of
graphs (in Sections 6.1 and 6.2), and a method for checking for �xing operations with the help
of a computer (in Section 6.3). �is still leaves a total of eight graphs, four graphs and their
complements, which we handle individually with two more constructions at the end of this
section.

Before we give the new constructions and the method to �nd �xing operations, let us
brie�y summarise the steps in the computer search. For each graph G on at most 11 vertices,
we check if any of the following hold.

1. �e graphH is a non-empty forest with a unique vertex of maximum degree (Lemma 16).
2. �e 2-core of H is a copy K2,p with p ≥ 3 (Lemma 14).
3. �e 2-core of H is a copy of K1,1,p where p ≥ 2 (Lemma 15).
4. �e 3-core of H is 3-connected and not a clique (Corollary 9).
5. �e (1, 1)-core of H is a copy of P4 or the bull graph (�eorem 20).
6. �e graph H is “close to” a permutation graph (�eorem 19).
7. �e 2-core, 3-core, 2-edge-core or 2-non-edge-core have �xing operations (see Sec-

tion 6.3).
If none of these hold for H , we check if any of them hold for its complement H . As men-
tioned earlier, these checks leave just eight graphs, E?qw, F?S|w, F?q|w and F?q w, and their
complements, which we resolve in Sections 6.4 and 6.5.

�e code used for this computer check is a�ached to the arXiv submission.

6.1 �e up and right graph
We start with a construction which we call the up and right graph, which handles all graphs
which are “close to” a permutation graph. A graph G on the vertices {v1, . . . , vn} is a permu-
tation graph if there is a permutation σ ∈ Sn such that, for every i < j, the edge vivj is present
if and only if σ(i) < σ(j). A graph is close to a permutation graph if it is not a permutation
graph, but adding or removing any edge creates a permutation graph.

�e up and right graph is the graph on Q×Q where the vertex (p, q) is connected to (s, t)
if and only if one of the following holds

• (q + r
√
2) < (s+ t

√
2) and (q − r

√
2) < (s− t

√
2)

• (q + r
√
2) > (s+ t

√
2) and (q − r

√
2) > (s− t

√
2)

17

�at is, two vertices are connected if one of the vertices is up and right of the other a�er
the linear transformation (q, r) 7→ (q + r

√
2, q − r

√
2) has been applied. Our motivation for

this is to ensure that no two vertices can di�er in exactly one coordinate. Indeed, if

q ± r
√
2 = s± t

√
2

where q, r, s, t ∈ Q, then we must have (q, r) = (s, t). �is means that given n distinct vertices
vi = (qi, ri) for i ∈ [n], we can order them such that

qi + ri
√
2 < qj + rj

√
2

whenever i < j.
Similarly, there is also an order based on the other coordinate, and there is a unique per-

mutation σ ∈ Sn such that
qi − ri

√
2 < qj − rj

√
2

whenever σ(i) < σ(j). With this notation, there is an edge between vi and vj , where i < j,
exactly when σ(i) < σ(j). �is means that any induced subgraph is a permutation graph.

�e following lemma shows that every permutation graph can be found as an induced
subgraph of the up and right graph, giving us a characterisation of exactly which �nite graphs
appear as induced subgraphs.

Lemma 18. A graph H is an induced subgraph of the up and right graph if and only if it is a
permutation graph.

Proof. We already argued that any induced subgraph is a permutation graph, so it only remains
to show how to �nd a copy of any given permutation graph. Let σ be a permutation that de�nes
the permutation graph H and consider the n points

ṽi =

(
i+ σ(i)

2
,
i− σ(i)
2
√
2

)
for i ∈ [n].

�e coordinates are chosen so that

i+ σ(i)

2
+
i− σ(i)
2
√
2

√
2 = i

and
i+ σ(i)

2
− i− σ(i)

2
√
2

√
2 = σ(i).

Ideally, we would take the ṽi as the vertices in the up and right graph, but the ṽi are not
necessarily rational. However, the rational points are dense in R2 and we can choose vertices
of the up and right graph which are su�ciently close to the points ṽi to keep the expected
adjacencies. �is provides a subgraph isomorphic to H .

Given this lemma is it not hard to prove the following theorem classifying the graphs which
are strongly saturating in the up and right graph.

�eorem 19. �e up and right graph is stronglyH-induced-saturated if and only if the following
hold.

1. H is not a permutation graph.

2. �ere exists an edge e such that H − e is a permutation graph.

18

3. �ere exists a non-edge e such that H + e is a permutation graph.

Proof. It is easy to see these conditions are necessary. Indeed, the up and right graph cannot
contain a copy of H so, by Lemma 18, H is a not a permutation graph. Adding an edge e to
the up and right graph must create a copy of H and e corresponds to some edge e′ of this
copy of H . �is means there is an induced copy of H − e′ in the up and right graph and
H − e′ is a permutation graph. Similarly, there must be a non-edge e of H such that H + e is
a permutation graph.

We now show that the conditions are su�cient. Since H is not a permutation graph there
is no copy of H in the up and right graph, and it remains to show that making any locally
�nite edit creates a copy of H . Let us �rst consider adding a single edge. By assumption there
is an edge e = vivj of H such that H − e is a permutation graph, and we claim that this is
enough to guarantee the existence of a copy of H a�er adding an edge.

Suppose H − e is a permutation graph and let f be a non-edge from (q, r) to (s, t) in
the up and right graph. �e up and right graph is vertex transitive so we can assume that
(q, r) = (0, 0). We now repeat the construction from Lemma 18, but with the addition of extra
scaling factors. De�ne

k′ = (k − i)s+ t
√
2

j − i
and σ′(k) = (σ(k)− σ(i)) s− t

√
2

σ(j)− σ(i)
,

and let
ṽk =

(
k′ + σ′(k)

2
,
k′ − σ′(k)

2
√
2

)
.

Note that by our choice of the scaling factors, we have ṽi = (0, 0) and ṽj = (s, t), so that
e corresponds to f . Since e is not an edge in the permutation graph, j − i and σ(j) − σ(i)
have opposite signs. Likewise, since f is not an edge in the up and right graph, s+ t

√
2 and

s− t
√
2 also have opposite signs, and the scaling factors both have the same sign. Hence, if

the ṽk were vertices in the up and right graph, we would have found an induced subgraph
isomorphic toH−e and we would be done. Instead, we may need to perturb the ṽk by a small
amount for k 6= i, j to make sure that they are rational.

Using an almost identical argument one can show that removing an edge creates a copy of
H provided that there is a non-edge e of H such that H + e is a permutation graph.

So far we have only shown that the graph is induced-saturated forH and contains a copy of
H when a single disturbance is made, but it is not hard to adapt the proof to handle locally �nite
disturbances. We begin as before, se�ing vi and vj as ṽi and ṽj respectively. We then choose
each vk in turn. At each step, there are in�nitely many choices for vk that are su�ciently close
to ṽk. Since the edit is locally �nite and we have only picked �nitely many vertices so far, we
can choose such a vertex (in fact, all but �nitely many work) for which none of the adjacencies
to the vertices we have already chosen have been altered.

6.2 �e torero graph
In this section, we give a construction which is strongly-H-induced-saturated whenever the
(1, 1)-core is a copy of the bull graph (see Figure 6) or P4.

�e torero graph has vertex set Q ∩ (0, 1) and there is an edge from x to y if and only if
x+ y > 1.

�eorem 20. �e torero graph is strongly H-induced-saturated whenever the (1, 1)-core of H is
a copy of the bull graph or P4.

19

x y

z

a b

Figure 6: �e bull graph.

xyza b

0 1

(a)

xy zab

0 1

(b)

Figure 7: We show in (a) how to create a bull when the edge bx is removed and we show in (b)
how to create a bull when by is added.

Proof. We prove this theorem in three parts. First, we show that there is no induced copy of
P4 in the torero graph (and hence no copy of the bull graph). �en we show that any locally
�nite modi�cation of the torero graph contains an induced copy of the bull graph (and hence an
induced copy ofP4). Finally, we observe that the torero graph is strongly-H-induced-saturated
when the (1, 1)-core is a copy of the bull graph or P4.

Label the vertices of P4 by v1, . . . , v4 so that the edges are v1v2, v2v3 and v3v4. Since v1v2
is an edge and v1v3 is not an edge, v1 + v2 > 1 > v1 + v3. In particular, v2 > v3. However,
since v3v4 is an edge and v2v4 is not an edge, we have v2 < v3, a contradiction.

Suppose that we remove an edge bx from the torero graph where b < x. Since this is
normally an edge, we have that b+ x > 1. �ere is therefore some y ∈ Q such that b < y < x
and b+ y > 1. Now choose a and z such that a+ y < 1 < a+x and z+ b < 1 < z+ y, which
is possible since b < y < x. �is gives an induced copy of the bull when we remove a single
edge from the torero graph. Since at each step we are choosing any rational in an interval, of
which there are in�nitely many, we can always choose a vertex such that no edge/non-edge
to any of the preceding vertices has been disturbed. �is means that we can also manage all
locally �nite edits. Adding an edge follows a similar argument where the new edge forms the
edge by in the bull. Diagrams of both cases can be seen in Figure 7.

Finally, we explain how to handle any graph H whose (1,1)-core is a copy of the bull
graph or P4. Since the torero graph has no induced copy of P4, it also has no copy of H . To
embed a copy of H a�er a locally �nite disturbance, we �rst embed a copy of the bull graph
or P4 as appropriate. �e graph H may be obtained from either the bull or P4 by iteratively
adding vertices connected to none of the preceding vertices, or to all of them. Given any set
of vertices, there are in�nitely many vertices which are connected to every vertex in the set
(those su�ciently close to 1) and in�nitely many vertices which are connected to none of the
vertices (those su�ciently close to 0), and we can �nd a copy of H by iteratively choosing
such vertices.

6.3 Computer check for gatekeepers
Let us say that a 2-cut {u, v} of G is an edge-2-cut if {u, v} is an edge in G, and otherwise we
say it is a non-edge-2-cut.

20

Let H be a 2-connected graph and let e = xy be an edge of H . We show that if there is no
non-edge-2-cut {u, v} of H such that a component of H − {u, v} is an induced subgraph of
H − e, then e is a gatekeeper. Suppose towards a contradiction that the edge e = xy is not a
gatekeeper. �en there is some graph G which does not contain a copy of H such that gluing
H − e to G by identifying x and y with the endpoints of a non-edge of G creates a copy H ′ of
H . �e vertices x and y are a 2-cut of H ′ and removing them splits H ′ into components, say,
C1, . . . , Cr. At least one of these components is disjoint from G, else H ′ would be contained
entirely in G. Let u and v be the vertices from H that correspond to x and y in H ′. �en the
component contained in H ′ − {x, y} corresponds to a component of H − {u, v} which is an
induced subgraph of H − e.

In fact, we can strengthen this condition slightly by including how a component of H −
{u, v} connects to the vertices {u, v}, and this is what we use in practice. �at is, for each
non-edge-2-cut {u, v} which splits H into components C1, . . . , Cr (say), we check if there is
a copy of H[V (Ci) ∪ {u, v}] in H − e where the vertices {u, v} correspond to {x, y} (either
way round). An example is given in Figure 8.

For the constructed graph to be strongly-H-induced-saturated it is not su�cient to simply
glue on a copy of H − e, even when e is a gatekeeper. Instead, we will replace each vertex
in H − e except for x and y by either in�nite cliques or stable sets. As seen in the proof of
Lemma 3, this can be done if neither vertex is a true twin or if neither vertex is a false twin, and
we check for this condition before we check if a particular edge or non-edge is a gatekeeper
using the above method.

Let us summarise by describing the implementation. First, the code checks that the graph
is 2-connected and not a complete graph. �en all of the 2-cuts are enumerated and split
into edge-2-cuts and non-edge-2-cuts. For each edge-2-cut e = xy, we check that x and y do
not have twins of di�ering types, and we move onto the next edge-2-cut if they do. We then
replace e by a “red” edge, which serves to colour the two vertices x and y. We loop over the
non-edge-2-cuts and, for each non-edge-2-cut {u, v}, we �nd the connected components of
H − {u, v}. For each connected component, C , we form the subgraph H[V (C) ∪ {u, v}] and
add in a red edge between u and v. If this subgraph is isomorphic (including edge colours) to
a subgraph of H , then we move onto another edge-2-cut. If we did not �nd such a subgraph
for any choice of non-edge-2-cut and connected component, then we have found the suitable
�xing operation and we move onto non-edge-2-cuts, which are handled similarly.

�is gives us a method to look for �xing operations in a given 2-connected graph, but we
can combine this with Lemma 8 to cover many more graphs. Indeed, suppose that the k-core
of H , which we denote H ′, has a �xing operation (potentially found by the method above) for
the class of H ′-free graphs. �en, by repeatedly applying Lemma 8, the graph H also admits a
�xing operation for the class ofH ′-free graphs and, in particular, is strongly saturating. Using
the third and fourth parts of Lemma 8, we can also generalise this to what we call the 2-edge-
core and the 2-non-edge-core. �e 2-edge-core (resp. 2-non-edge-core) of a graph is formed by
repeatedly removing vertices of degree less than 2 and vertices of degree 2 whose neighbours
are adjacent (resp. non-adjacent). �e 2-edge-core of a graph has minimum degree at least
2 and no vertex v with degree 2 whose neighbours are adjacent. Using Lemma 8 repeatedly,
it follows that the graph H admits a �xing operation if its 2-edge-core or 2-non-edge-core
admits a �xing operation, as required for check 7 above.

21

(a) (b) (c)

Figure 8: (a) �e graph Dr[with its only 2-cut highlighted in red. �ere are no 2-cuts which
are edges, so every non-edge is a gatekeeper. (b) �e graph with the edge xy removed, with x
and y highlighted in red. (c) �e two fragments of the graph created by taking the components
of the only 2-cut and adding back in the 2-cut. Observe that there is no copy of either of the
fragments in (b) with matching vertex colours, which means that xy is a gatekeeper.

6.4 �e rational geometric graph
�e rational geometric graph is the graph on Q where there is an edge between q and r if and
only if |q − r| < π. Our main interest in this construction is to handle the three problematic
small graphs shown in Figure 9. First, we make the easy observation that the neighbourhood
of any vertex v in the rational geometric graph can be partitioned into two cliques (where
there may be edges between the cliques). In particular, this immediately shows that none of
the graphs in Figure 9 are induced subgraphs of the rational geometric graph.

(a) E?qw
(b) F?rLw (c) F?S|w

Figure 9: �e three problematic graphs which we handle using the rational geometric graph.
�e vertices highlighted in red have neighbourhoods which cannot be split into two cliques.

To handle these graphs, what remains to show is that making any locally �nite edit to the
rational geometric graph creates an induced copy. Let us �rst consider making just a single
change, either swapping an edge to a non-edge or a non-edge to an edge. By the symmetry
of the rational geometric graph, we can assume the edge/non-edge is from 0 to some r > 0,
where r < π if it is an edge and r > π if it is a non-edge. It is straightforward to �nd a
sequence of intervals from which we can choose the vertices of our small graphs, but in the
interest of conciseness we only sketch the constructions in Figure 10.

Again, since we may choose from in�nitely many vertices at any stage, we can always
choose one such that none of the edges/non-edges to the proceeding vertices have been altered.

6.5 �e �nal graph
�ere is one �nal graph we need to handle, shown in Figure 11.

We �rst give an auxiliary construction and then blow this up to allow for locally �nite
disturbances. Let G be the graph with vertex set Z3. We join the vertex (i, j, k) to (a, b, c) in
G if they agree in at least one coordinate, i.e. i = a, j = b or k = c. �ere are two di�erent
kinds of edges uv in G: those where u and v agree in exactly one coordinate and those where
u and v agree in exactly two coordinates. �ere is one type of non-edge.

22

0 π 2π 3π

(a)

0 π 2π 3π

(b)

0 π 2π 3π

(c)

0 π 2π 3π

(d)

0 π 2π 3π

(e)

0 π 2π 3π

(f)

Figure 10: �e le�-hand side shows the constructions when removing an edge on the do�ed
line and the right-hand side shows the constructions when adding the edge indicated by the
do�ed line.

Figure 11: �e �nal graph F?q˜w.

�e graph G′ that we are interested in is obtained by blowing up each vertex of G into
an in�nite clique (replacing edges by complete bipartite graphs). We can split the neighbours
of any vertex of G′ into three cliques based on which coordinate they agree on in G, which
shows that G′ does not contain a copy of H .

Next, we show that making any locally �nite disturbance creates a copy of H . We again
�rst show that a single disturbance in G results in a copy of H in Figure 12.

(0,1,3)

(0,1,1)

(3,0,2)

(2,2,0)

(1,0,1)

(1,1,0)

(0,0,0)
(3,3,0)

(1,2,0)

(2,0,3)

(0,1,2)

(1,0,1)

(1,1,0)

(0,0,0)

(4,1,3)

(3,3,0)

(0,2,2)

(1,0,1)

(2,2,0)

(1,1,0)

(0,0,0)

Figure 12: Examples of how to embedH into a copy ofGwhen an edge ofG has been disturbed.
�e do�ed lines represent the location of the edge which was removed (top) or added (bo�om).

23

Suppose now that v′1v′2 is disturbed in a locally �nite disturbance of G′ where v′1 and v′2
correspond to di�erent vertices v1 and v2 in G. �en a copy of H will still be created. �e
argument for this is similar to previous constructions: if v1, . . . , vk are the vertices in G on
which a copy ofH is created a�er disturbing v1v2 inG, then we may iteratively choose v′i cor-
responding to vi such that the edges/non-edges from v′i to v′1, . . . , v′i−1 have not been adjusted.

(1,0,1)

(3,3,0)

(0,2,2)

(1,0,1)

(2,2,0)

(1,1,0)

(0,0,0)

Figure 13: �e construction shows how to obtain a copy of H when an edge is removed be-
tween two vertices which come from the same vertex of G (in this case, (1, 0, 1)).

We have also introduced a new type of edge inG′: an edge u′u′′ where both u′ and u′′ come
from the in�nite clique that corresponds to a single vertex u of G. We indicate in Figure 13
how to obtain a copy of H in a locally �nite disturbance that only a�ects edges of this type.

6.6 Proof of �eorem 1
We now have all the components required to prove �eorem 1.

Proof of �eorem 1. Suppose that H is a �nite graph on at least 12 vertices which is not a
clique or stable set. By �eorem 10, either the graph H or its complement H satis�es one of
the following statements:

1. H is a forest with a unique vertex of maximum degree,
2. the 2-core of H is K2,p for p ≥ 3,
3. the 2-core of H is K1,1,p for p ≥ 3, or
4. the 3∗-core of H is 3-connected and not a clique.

In the �rst and fourth cases, there exists a strongly H-induced-saturated graph by Lemma 16
and Corollary 9, respectively. By Lemma 14, any graph in the second case admits a �xing
operation for the class of K2,p-free graphs. By Lemma 15, any graph in the third case admits
a �xing operation for a particular class of K1,1,p-free graphs. Applying Lemma 17 in each of
these cases, and noting that the complement of any strongly H-induced-saturated graph is a
strongly H-induced-saturated graph, completes the proof for any H on at least 12 vertices.

For graphs on at most 11 vertices, our computer search identi�es whether each graph H
or its complement satis�es any of the following conditions.

1. �e graph H is a non-empty forest with a unique vertex of maximum degree.
2. �e 2-core of H is a copy K2,p with p ≥ 3.
3. �e 2-core of H is a copy of K1,1,p where p ≥ 2.
4. �e 3-core of H is 3-connected and not a clique.
5. �e (1, 1)-core of H is a copy of P4 or the bull graph.

24

6. �e graph H is close to a permutation graph.
7. �e 2-core, 3-core, 2-edge-core or 2-non-edge-core have �xing operations.

�e �rst four cases follow for the same reasons they did for graphs on at least 12 vertices. �e
��h and sixth cases are resolved by �eorems 20 and 19, respectively. �e last case is consid-
ered in Section 6.3. �ere are 8 graphs (E?qw, F?S|w, F?q|w and F?q w, and their complements)
which do not fall into one of the above cases. �e �rst six of these are resolved in Section 6.4,
and the �nal pair is resolved in Section 6.5.

7 Conclusion
Even though it is still widely open which �nite graphs H admit a �nite H-induced-saturated
graph, we obtained a full characterisation in this paper when allowing countable H-induced-
saturated graph instead. We showed that a �nite graph H admits a countable H-induced-
saturated graph if and only if H is not a clique or stable set. We also showed the characterisa-
tion remains the same when asking for a much stronger notion of saturation.

Many interesting directions remain open. For example, what happens when H is in�nite?
What about other structures than graphs, for example, can a similar (or partial) characteri-
sation be obtained for k-uniform hypergraphs, coloured graphs, matroids, posets or directed
graphs? In some of these cases, an appropriate notion of “disturbance” has to be chosen. As
an explicit example, for tournaments it seems natural to “�ip the direction of edges”.

Problem 21. For which �nite tournaments H , does there exist a countable tournament G that
does not contain H as subtournament, yet any tournament obtained from G by changing the
direction of a single arc does contain H?

For example, when H is a �nite transitive tournament, then it can never be avoided, but
when H is a directed triangle then there are even �nite examples for G. It would also be
interesting to see if the answer is the same for the “locally �nite disturbance” variant of this
question.

Another direction is to show the existence (or non-existence) of graphs that are simul-
taneously (strongly) H-induced-saturated for all graphs H in a speci�c class of graphs. We
gave such a result for the class of forests which have a unique vertex of maximum degree, and
also characterised in �eorem 19 for which graphs H our “up-and-right graph” is strongly
H-induced-saturated. What about the class of �nite co-graphs, or �nite graphs of bounded
twinwidth?

References
[1] M. Axenovich and M. Csikós. Induced saturation of graphs. Discrete Mathematics,

342(4):1195–1212, 2019.

[2] S. Behrens, C. Erbes, M. Santana, D. Yager and E. Yeager. Graphs with induced saturation
number zero. Electronic Journal of Combinatorics, 23(1):#P1.54, 2016.

[3] M. Bonamy, C. Groenland, T. Johnston, N. Morrison and A. Sco�.
Induced saturation for P5. https://tomjohnston.co.uk/blog/
2020-05-22-induced-saturation-for-paths.html, 2020.

25

https://tomjohnston.co.uk/blog/2020-05-22-induced-saturation-for-paths.html
https://tomjohnston.co.uk/blog/2020-05-22-induced-saturation-for-paths.html

[4] P. J. Cameron and J. Nešetřil. Homomorphism-homogeneous relational structures. Com-
binatorics, Probability and Computing, 15(1-2):91–103, 2006.

[5] G. L. Cherlin. �e Classi�cation of Countable Homogeneous Directed Graphs and Countable
Homogeneous n-tournaments, volume 621. American Mathematical Soc., 1998.

[6] E.-K. Cho, I. Choi and B. Park. On induced saturation for paths. European Journal of
Combinatorics, 91:103204, 2021.

[7] B. L. Currie, J. R. Faudree, R. J. Faudree and J. R. Schmi�. A survey of minimum saturated
graphs. Electronic Journal of Combinatorics, DS19:36, 2021.

[8] R. Diestel, R. Hahn and W. Vogler. Some remarks on universal graphs. Combinatorica,
5:283–293, 1985.

[9] R. Diestel and D. Kühn. A universal planar graph under the minor relation. Journal of
Graph �eory, 32(2):191–206, 1999.

[10] V. Dvořák. Pn-induced-saturated graphs exist for all n ≥ 6. Electronic Journal of Combi-
natorics, 27(4):#P4.43, 2020.

[11] P. Erdős, A. Hajnal and J. W. Moon. A problem in graph theory. American Mathematical
Monthly, 71:1107–1110, 1964.

[12] X. Fan, S. Hajebi, S. Hajebi and S. Spirkl. Halfway to induced saturation for even cycles.
arXiv preprint arXiv:2505.24100, 2025.

[13] P. Komjáth, A. H. Mekler and J. Pach. Some universal graphs. Israel Journal of Mathe-
matics, 64(2):158–168, 1988.

[14] A. H. Lachlan and R. E. Woodrow. Countable ultrahomogeneous undirected graphs.
Transactions of the American Mathematical Society, 262(1):51–94, 1980.

[15] R. R. Martin and J. J. Smith. Induced saturation number. Discrete Mathematics,
312(21):3096–3106, 2012.

[16] J. Pach. A problem of Ulam on planar graphs. European Journal of Combinatorics,
2(4):357–361, 1981.

[17] R. Rado. Universal graphs and universal functions. Acta Arithmetica, 9:331–340, 1964.

[18] E. Räty. Induced saturation of P6. Discrete Mathematics, 343(1):111641, 2020.

[19] J. H. Schmerl. Countable homogeneous partially ordered sets. Algebra universalis,
9(1):317–321, 1979.

[20] C. M. Tennenhouse. Induced subgraph saturated graphs. �eory and Applications of
Graphs, 3(2), 2016.

26

	Introduction
	P4 and fixing operations
	C5 and gatekeepers
	C5 with a leaf and cores
	Outline of the proof
	From individual disturbances to locally finite disturbances

	Notation and definitions
	Graphs with a 3-connected core
	A characterisation of the remaining graphs
	The remaining large graphs
	Fixing operations for K2p
	Fixing operation for K11p
	Forests with a vertex of unique maximum degree
	Scheduling the fixes

	The remaining small graphs
	The up and right graph
	The torero graph
	Computer check for gatekeepers
	The rational geometric graph
	The final graph
	Proof of Theorem 1

	Conclusion

