
Reconstruction from smaller cards

Carla Groenland* Tom Johnston� Alex Scott�� Jane Tan�

Abstract

The ℓ-deck of a graph G is the multiset of all induced subgraphs
of G on ℓ vertices. We say that a graph is reconstructible from its ℓ-
deck if no other graph has the same ℓ-deck. In 1957, Kelly showed that
every tree with n ≥ 3 vertices can be reconstructed from its (n − 1)-
deck, and Giles strengthened this in 1976, proving that trees on at least
6 vertices can be reconstructed from their (n − 2)-decks. Our main
theorem states that trees are reconstructible from their (n − r)-decks
for all r ≤ n/9+o(n), making substantial progress towards a conjecture
of Nýdl from 1990. In addition, we can recognise the connectedness of
a graph from its ℓ-deck when ℓ ≥ 9n/10, and reconstruct the degree
sequence when ℓ ≥

√
2n log(2n). All of these results are significant

improvements on previous bounds.

1 Introduction

Throughout this paper, all graphs are finite and undirected with no loops or
multiple edges. Given a graph G and any vertex v ∈ V (G), the card G− v is
the subgraph of G obtained by removing the vertex v together with all edges
incident to v. The deck D(G) is then the multiset of all unlabelled cards of
G. A graph G is said to be reconstructible from its deck if any graph with the
same deck is isomorphic to G.

The graph reconstruction conjecture of Kelly and Ulam [18, 19, 37] states
that all graphs on at least three vertices are reconstructible. While this clas-
sical conjecture has been verified for certain classes such as trees (Kelly [19]),
outerplanar graphs (Giles [13]) and maximal planar graphs (Lauri [24]), it re-
mains open even for simple classes of graphs such as planar graphs and graphs
of bounded maximum degree. However, various graph parameters, such as the
degree sequence and connectedness, are known to be reconstructible for general
graphs in the sense that they are determined by the deck (i.e. if two graphs
have the same deck, then the parameter takes the same value for both).

*Delft Institute of Applied Mathematics, Technische Universiteit Delft, 2628 CD Delft,
Netherlands, c.e.groenland@tudelft.nl.

�Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
tom.johnston@bristol.ac.uk, scott@maths.ox.ac.uk, jane.tan@maths.ox.ac.uk

�Supported by EPSRC grant EP/V007327/1.

1



There is a significant body of research on the problem of reconstructing
graphs and graph parameters from smaller cards: instead of taking induced
subgraphs on n−1 vertices, it is natural to consider cards which are the induced
subgraphs on ℓ vertices where ℓ may be much smaller than n− 1. The ℓ-deck
of G, denoted by Dℓ(G), is the multiset of all induced subgraphs of G on ℓ
vertices (in this notation D(G) = Dn−1(G)). A graph or graph parameter is
reconstructible from the ℓ-deck if it is determined by the ℓ-deck.

Intuitively, individual cards that are smaller carry less information. Indeed,
the (ℓ− 1)-deck is determined by the ℓ-deck for each ℓ, as can be shown by a
simple counting argument (see Lemma 8). Thus, if a graph is reconstructible
from its ℓ′-deck then it is reconstructible from its ℓ-deck for all ℓ ≥ ℓ′. The
main question is then to determine the threshold; that is, to determine the
smallest ℓ for which a given class of graphs or a property is reconstructible
from the ℓ-deck.

Reconstruction from small cards is generally attributed to Kelly, although
the strengthening of the Reconstruction Conjecture that follows seems to be
formulated by Manvel (who calls it “Kelly’s Conjecture”).

Conjecture 1 ([19, 27]). For every r ∈ N, there is an integer Nr such that
every graph with at least Nr vertices is reconstructible from its (n− r)-deck.

Kelly and Ulam’s conjecture posits that N1 = 3. This stronger conjecture
did not receive much attention until 1974 when it was studied by Manvel [27],
who showed that several classes of graphs, such as connected graphs, trees,
regular graphs and bipartite graphs, can be recognised from the (n − 2)-deck
where n ≥ 6 is the number of vertices (that is, if G and H are graphs with n
vertices and the same (n− 2)-deck, then either both graphs or neither belong
to the class). Since then, recognition and reconstruction problems of this type
have been widely studied. Recent developments include the reconstructibility
of 3-regular n-vertex graphs from the (n−2)-deck (Kostochka, Nahvi, West and
Zirlin [20]) and that almost all graphs are reconstructible from

(
r+2
2

)
specially

chosen cards from the (n − r)-deck when r ≤ (1/2 − o(1))n (Spinoza and
West [33], building on results of Müller [28] and Bollobás [3]). For further
background, we refer to the survey of Kostochka and West [23].

For general graphs, it is not possible to guarantee reconstructibility from
the (n− r)-deck unless r = o(n), as shown by the following theorem of Nýdl.

Theorem 2 (Nýdl [32]). For any integer n0 and 0 < α < 1, there exists an
integer n > n0 such that there are two non-isomorphic graphs on n vertices
which share the same multiset of subgraphs of order at most αn.

However, Nýdl’s theorem may not hold for specific families of graphs such as
the class of trees. In fact, Nýdl conjectured in 1990 that no two non-isomorphic
trees have the same ℓ-deck when ℓ is slightly larger than n/2.

Conjecture 3 (Nýdl [31]). For any n ≥ 4 and ℓ ≥ ⌊n/2⌋ + 1, any two trees
on n vertices with the same ℓ-deck are isomorphic.

2



Figure 1: Two non-isomorphic trees on 13 vertices which have the same 7-deck.

The conjectured bound would be sharp: Nýdl [31] presented trees for which
ℓ ≥ ⌊n/2⌋+ 1 is necessary (see [23] for a short proof).

There has been no progress on Nýdl’s conjecture since it was made in [31].
Indeed, the best previous result is an earlier bound of Giles [14] from 1976,
which states that for n ≥ 5 no two non-isomorphic n-vertex trees have the
same (n − 2)-deck. Using the result of Manvel [27] that the class of n-vertex
trees is recognisable from the (n− 2)-deck when n ≥ 6, Giles’ result confirms
that trees can be reconstructed from their (n− 2)-deck for all n ≥ 6.

Our main theorem improves very substantially on the result of Giles and
takes a significant step towards Conjecture 3, showing that we can reconstruct
trees from the (n− r)-deck for r with linear size.

Theorem 4. Any n-vertex tree T can be reconstructed from Dn−r(T ) when
r < n

9
− 4

9

√
8n+ 5− 1.

In particular, it follows that Nýdl’s theorem (Theorem 2) does not hold
when restricted to the class of trees. We remark that Conjecture 3 is false in the
case n = 13, as demonstrated by the two graphs in Figure 1 which have been
verified to have the same deck by computer. However, our computer search
has also shown that the conjecture is true for all other values 4 ≤ n ≤ 25, and
it remains open for large n.

It is worth noting that the class of trees, being one of the first non-trivial
classes shown to be reconstructible in the classical sense, is very prominent in
reconstruction literature. For example, assuming we know a priori that the
graph is a tree, Harary and Palmer [16] showed how to recover a tree using only
the cards that are subtrees, Bondy [4] showed that only the cards where pe-
ripheral vertices have been removed are needed and Manvel [26] subsequently
showed that the set (as opposed to the multiset) of cards that are trees suf-
fices (except in four cases). Lauri [25] also showed that trees with at least
three cutvertices can be reconstructed (amongst all graphs) from the cards
corresponding to removing a cutvertex. Indeed, Myrvold [29] proved that only
three carefully chosen cards are needed to reconstruct a tree when n ≥ 5. Re-
lated problems have also been investigated extensively for infinite trees (see,
for example [17, 6, 35, 1, 30, 2]), and it was recently shown by Bowler, Erde,
Heinig, Lehner and Pitz that there are non-reconstructible locally finite trees
[10].

Returning to the small cards setting, we have already mentioned Manvel’s
result in [27] that the class of connected graphs is recognisable from the (n−2)-
deck for n ≥ 6. Extending this, Kostochka, Nahvi, West, and Zirlin [21] showed
that the connectedness of a graph on n ≥ 7 vertices is determined by Dn−3(G).
As shown by Spinoza and West [33], if we take G1 = Pn (the path on n vertices)
and G2 = C⌈n/2⌉+1 ⊔ P⌊n/2⌋−1 the disjoint union of a cycle and a path, we find

3



Dℓ(G1) = Dℓ(G2) for all ℓ ≤ ⌊n/2⌋. However, G1 is connected and G2 is not.
In light of this construction, Spinoza and West believe that for n ≥ 6 and
ℓ ≥ ⌊n/2⌋ + 1, the connectedness of an n-vertex graph G is determined by
Dℓ(G). This threshold would be sharp.

Spinoza and West proved in [33] that connectedness can be recognised from
Dℓ(G) provided

n− ℓ ≤ (1 + o(1))

√
2 log n

log(log n)
.

We significantly improve this bound to allow a linear gap between n and ℓ.

Theorem 5. The connectedness of an n-vertex graph G can be recognised from
Dℓ(G) provided ℓ ≥ 9n/10.

By Theorem 5 (and the fact that we can reconstruct the number of edges),
we can recognise trees from the ℓ-deck when ℓ ≥ 9n/10. In order to prove
Theorem 4, we need a slightly stronger bound.

Theorem 6. For ℓ ≥ (2n+4)/3, the class of trees on n vertices is recognisable
from the ℓ-deck.

As we were completing this paper, Kostochka, Nahvi, West and Zirlin [22]
independently announced a similar result to Theorem 6. In fact, they proved
that one can recognise if a graph is acyclic from the ℓ-deck when ℓ ≥ ⌊n/2⌋+1,
which also verifies the believed bound for reconstructing connectedness in the
special case of forests. This has the particularly nice consequence that trees
can be recognised from their ℓ-deck, and so Conjecture 3 is equivalent to the
reconstruction of trees amongst general graphs. Since our proof of Theorem 6
is short and already (more than) sufficient for our purpose of reconstructing
trees, we have retained it to keep the proof of our main result self-contained.

The proof of Theorem 5 relies on an algebraic result (Lemma 11) which we
also apply to reconstructing degree sequences. The story in the literature here
is similar to that for connectedness. Chernyak [12] showed that the degree
sequence of an n-vertex graph can be reconstructed from its (n − 2)-deck for
n ≥ 6, and this was later extended by Kostochka, Nahvi, West, and Zirlin [21]
to the (n − 3)-deck for n ≥ 7. The best known asymptotic result is due to
Taylor [34], and implies that the degree sequence of a graph G on n vertices
can be reconstructed from Dℓ(G) where ℓ ∼ (1− 1/e)n. Our improved bound
is as follows.

Theorem 7. The degree sequence of an n-vertex graph G can reconstructed
from Dℓ(G) for any ℓ ≥

√
2n log(2n).

In Section 2, we give ℓ-deck versions of both Kelly’s Lemma [19] and a
result on counting maximal subgraphs by Greenwell and Hemminger [15], as
well as an algebraic result of Borwein and Ingalls [9] bounding the number of
moments shared by two distinct sequences. These are used to deduce Theorem
7 (Section 3) and Theorem 5 (Section 4). Our main result on reconstructing
trees, Theorem 4, is proved in Section 5 which also contains a new counting
tool for reconstruction that may be of independent interest as well as the proof
of Theorem 6. We conclude with some further discussion in Section 6.

4



2 Preliminaries

This paper makes extensive use of three key results which we give in this
section.

2.1 Kelly’s Lemma

Let ñH(G) and nH(G) denote the number of subgraphs and induced subgraphs
of G isomorphic to H respectively. We will reserve the word copy of H for
an induced subgraph isomorphic to H, and say an instance of H to mean not
necessarily induced.

In the classical graph reconstruction problem, Kelly’s Lemma states that
we can reconstruct nH(G) and ñH(G) provided |V (H)| < |V (G)|, and there
are many variants of the lemma for other reconstruction problems (see [5]).
We use the following variant.

Lemma 8. Let ℓ ∈ N and let H be a graph on at most ℓ vertices. For any
graph G, the multiset of ℓ-vertex induced subgraphs of G determines both the
number of subgraphs of G that are isomorphic to H and the number of induced
subgraphs that are isomorphic to H.

In particular, Kelly’s Lemma means that Dℓ′(G) can be reconstructed from
Dℓ(G) for all ℓ′ ≤ ℓ.

Despite its great usefulness, the proof of Kelly’s Lemma requires nothing
more than elementary counting. Suppose we count the number of copies of H
in each of the ℓ-cards of G, and take the sum over all cards. Each copy of H
in G will be counted exactly

(
n−|V (H)|
ℓ−|V (H)|

)
times toward this total. Hence, we can

reconstruct the number nH(G) of copies of H in G from the ℓ-deck as

nH(G) =

(
n− |V (H)|
ℓ− |V (H)|

)−1 ∑
C∈Dℓ(G)

nH(C).

The same argument applies with instances rather than copies. Foreshadowing
later usage, we remark that Kelly’s Lemma only requires the subset of the deck
consisting of the cards which contain at least one copy of the fixed graph H.

2.2 Counting maximal subgraphs

Given a class of graphs F , a subgraph F ′ of some graph G is said to be an
F-subgraph if F ′ is isomorphic to some F ∈ F , and is a maximal F-subgraph
if the subgraph F ′ cannot be extended to a larger F -subgraph, that is, there
does not exist an F -subgraph F ′′ of G such that V (F ′) ⊊ V (F ′′).

Let m(F,G) denote the number of maximal F -subgraphs in G which are
isomorphic to F . We give a slight variation of a classical “Counting Theorem”
due to Bondy and Hemminger [7] (see also the statement of Greenwell and
Hemminger [15]) which reconstructs m(F,G) from the ℓ-deck.

5



Lemma 9. Let n ∈ N, let ℓ ∈ [n− 1] and let G be a class of n-vertex graphs.
Let F be a class of graphs such that for any G ∈ G and for any F-subgraph F
of G,

(i) |V (F )| ≤ ℓ;

(ii) F is contained in a unique maximal F-subgraph of G.

Then for all F ∈ F and G ∈ G, we can reconstruct m(F,G) from the collection
of cards in the ℓ-deck that contain an F-subgraph.

The following proof is essentially that of Bondy and Hemminger [7], only
with a few additional observations used to accommodate our slight changes to
the assumptions.

Proof. Define an (F,G)-chain of length k to be a sequence (X0, . . . , Xk) of
F -subgraphs of G such that

F ∼= X0 ⊊ X1 ⊊ · · · ⊊ Xk ⊊ G.

The rank of F in G is the length of a longest (F,G)-chain, and two chains are
called isomorphic if they have the same length and the corresponding terms
are isomorphic. Following Bondy and Hemminger’s argument, we first show
that

m(F,G) =
rankF∑
k=0

∑
(−1)kñF (X1)ñX1(X2) · · · ñXk−1

(Xk)ñXk
(G) (1)

where the second summation is over all non-isomorphic (F,G)-chains of length
k. When rankF = 0, we have m(F,G) = ñF (G). Let rankF = r, and
suppose that (1) holds for all graphs F ∈ F with rank less than r. The second
assumption states that every copy of F has a unique maximal extension X,
which implies that

ñF (G) =
∑
X

ñF (X)m(X,G),

where the sum is over all non-isomorphic F -subgraphs X of G. This gives the
expression

m(F,G) = ñF (G)−
∑
X ̸∼=F

ñF (X)m(X,G).

In the summation, we can restrict to X for which ñF (X) > 0. Such a graph X
has rank at most r−1, so we may apply the induction hypothesis to rewrite each
m(X,G)-term into a double sum. The resulting triple sum can be simplified
to obtain (1).

It now suffices to show that the RHS of (1) is reconstructible. To see this,
we note that the inner summation is over (F,G)-chains for which Xk has size
at most ℓ (since Xk is an F -subgraph and by condition (i)), and so all such
chains can be seen on cards. The remaining terms can be reconstructed by
Kelly’s Lemma (again using (i)), and this only requires the cards from Dℓ(G)
that contain an F -subgraph.

6



2.3 Shared moments of sequences

We will need a bound on the maximum number of shared moments that two
sequences α, β ∈ {0, . . . , n}m can have. This result follows from the following
theorem on the number of positive real roots of a polynomial. We use log to
mean the natural logarithm here.

Theorem 10 (Theorem A in [8]). Suppose that the complex polynomial

p(z) :=
n∑

j=0

ajz
j

has k positive real roots (counted with multiplicity). Then

k2 ≤ 2n log

(
|a0|+ |a1|+ · · ·+ |an|√

|a0an|

)
.

This theorem is attributed to Schmidt, but the first published proof is due
to Schur and a series of simplifications have followed (see [8]). The specific
application that we require was given by Borwein and Ingalls [9, Proposition
1]. We shall use the following formulation which is tailored to our purposes.

Lemma 11. Let α, β ∈ {0, . . . , n}m be two sequences that are not related to
each other by a permutation. If(

α1

j

)
+ · · ·+

(
αm

j

)
=

(
β1

j

)
+ · · ·+

(
βm

j

)
for all j ∈ {0, . . . , ℓ}, (2)

then ℓ+ 1 ≤
√

2n log(2m).

Proof. Since αi, βj ∈ {0, . . . , n} for all i, j ∈ [m],

pα,β(x) :=
m∑
i=1

xαi −
m∑
i=1

xβi (3)

is a polynomial of degree at most n. For c ∈ C, let multc(pα,β) denote the
multiplicity of the root at c, or 0 if c is not a root of pα,β. We will show that

ℓ+ 1 ≤ mult1(pα,β) ≤
√
2n log(2m).

Since α and β are not related by a permutation, the polynomial pα,β is
non-zero. We may write (with r = mult0(pα,β))

pα,β(x) = xr

(
n′∑
j=0

ajx
j

)

where a0 and an′ are non-zero and n′ ≤ n . The coefficients are all integral, so√
|a0an′ | ≥ 1. Moreover, from the definition of the polynomial in (3) there are

at most 2m contributions of ±1 to the coefficients, so we have
∑n′

i=0 |ai| ≤ 2m.

7



By Theorem 10, the number of positive real roots of
∑n′

j=0 ajx
j is at most√√√√2n′ log

(
|a0|+ |a1|+ · · ·+ |an′ |√

|a0an′|

)
≤
√
2n log(2m)

and in particular, mult1(pα,β) ≤
√
2n log(2m). On the other hand, for all

j ∈ {0, . . . , ℓ}, equation (2) shows that∣∣∣∣∣
(

d

dxj

[
m∑
i=1

xαi −
m∑
i=1

xβi

])∣∣∣∣∣
x=1

=
m∑
i=1

j!

(
αi

j

)
−

m∑
i=1

j!

(
βi

j

)
= 0.

Hence, ℓ+ 1 ≤ mult1(pα,β), and ℓ+ 1 ≤
√

2n log(2m) as desired.

Condition (2) is equivalent to the condition that the first ℓ moments of
α and β agree. To see this, observe that {xi : i ∈ {0, . . . , ℓ}} and {

(
x
i

)
:

i ∈ {0, . . . , ℓ}} both form a basis for the polynomials of degree at most ℓ.
When α, β can be arbitrary integer sequences (instead of taking values in
{0, . . . , n}) this variant is sometimes called the Prouhet-Tarry-Escott problem,
and sequences are known with the first Ω(

√
m) moments in common (see [9,

Proposition 3] for a simple counting argument).

3 Reconstructing the degree sequence

The tools of the preceding section allow us to prove that the degree sequence
of an n-vertex graph G can be reconstructed from the ℓ-deck of G whenever
ℓ ≥

√
2n log(2n). The proof is essentially identical to that given by Taylor

[34], except for the use of the stronger bounds provided by Lemma 11.

Theorem 7. The degree sequence of an n-vertex graph G can reconstructed
from Dℓ(G) for any ℓ ≥

√
2n log(2n).

Proof. Let G have vertices v1, . . . , vn, and let ℓ ≥
√

2n log(2n) be an integer.
By Lemma 8, we can reconstruct the number of subgraphs of G isomorphic to
the star K1,j for all j ∈ {2, . . . , ℓ−1}. Since vertex v lies at the centre of

(
d(v)
j

)
copies of K1,j, we can compute the quantity

ñK1,j
(G) =

∑
v∈V (G)

(
d(v)

j

)
from the ℓ-deck. We can also reconstruct∑

v∈V (G)

(
d(v)

0

)
= n and

∑
v∈V (G)

(
d(v)

1

)
= 2 · e(G)

from the 2-deck. Write αi = d(vi) for i ∈ [n] where we may assume d(v1) ≤
· · · ≤ d(vn). Suppose, for a contradiction, that a different degree sequence
β1 ≤ · · · ≤ βn gives the same counts. Then, for j ∈ {0, . . . , ℓ− 1},

n∑
i=1

(
αi

j

)
=

n∑
i=1

(
βi

j

)
.

8



Since α, β ∈ {0, . . . , n − 1}n are not permutations of each other, Lemma 11
applies to show ℓ ≤

√
2(n− 1) log(2n) as desired.

4 Recognising connectedness

In this section, we prove our theorem on reconstructing connectedness from
the ℓ-deck. Recall that throughout this paper, a copy H ′ of H in some graph
G refers to an induced subgraph of G that is isomorphic to H.

The main idea of the proof is that a graph G has a connected component
isomorphic to some graph H on strictly less vertices than G, if and only if
it has an induced subgraph isomorphic to H ‘without any neighbours’. By a
similar approach to the previous section, when |V (H)| is small we can actually
compute the entire ‘degree sequence’, that is, for each k we can find the number
of induced copies of H with k ‘neighbours’. So we are done if G has a small
component. But if G has no small components, then it is either connected or
only has medium-sized components (in which case we recognize that it has no
large connected subgraphs and we are done).

Theorem 5. The connectedness of an n-vertex graph G can be recognised from
Dℓ(G) provided ℓ ≥ 9n/10.

Proof. Let G be an n-vertex graph and let ε = 1/10, so our assumption is that
ℓ ≥ 9n/10 = (1 − ε)n. We begin by making an additional assumption on the
size of n; it was shown by Kostochka, Nahvi, West, and Zirlin [21] that the
connectedness of a graph can be recognised from the (n − 3)-deck for n ≥ 7,
so we can assume that n ≥ 39.

Using Lemma 8 we can count the number of connected subgraphs of G on
ℓ vertices. If there are no such subgraphs, the graph must be disconnected
and we are done. We may therefore assume that G is either connected, or its
largest component has order at least ℓ. In particular, if G is not connected
then it has a component of order at most n− ℓ.

We will reconstruct all components that have at most n − ℓ vertices from
the ℓ-deck. Let H be a connected graph with h vertices, where 1 ≤ h ≤ εn.
Since h ≤ ℓ, we may compute nH(G) from the ℓ-deck by Lemma 8. Suppose
m = nH(G) > 0. Write H1, . . . , Hm for the induced copies of H in G, and
define the neighbourhood of Hi by

Γ(Hi) = {v ∈ V (G) \ V (Hi) : vu ∈ E(G) for some u ∈ Hi}.

Define the degree of Hi to be |Γ(Hi)|, and denote it by αi. Note that G has
a component isomorphic to H if and only if αi = 0 for some i ∈ [m]. Thus,
reconstructing the sequence (α1, . . . , αm) ∈ {0, . . . , n − h}m determines the
number of components isomorphic to H.

We now show that we can reconstruct (α1, . . . , αm) up to permutation.

Since 1 ≤ h ≤ εn and m ≤
(
n
h

)
≤
(
en
h

)h
, we have√

2(n− h) log(2m) ≤
√

2(n− h)h log(en/h) + 2n log(2)

≤ n
√

2(1− ε)ε log(e/ε) + 2 log(2)/n,

9



where we also have that (n− h)h log(en/h) is increasing in h within the given
range. Hence by Lemma 11, it suffices to show that we can reconstruct

m∑
i=1

(
αi

j

)
for all integers 0 ≤ j ≤ N, (4)

where N = n
√

2(1− ε)ε log(e/ε) + 2 log(2)/n.
Let P denote the set of pairs of vertex sets (A,B) where A ⊆ B ⊆ V (G),

G[A] ∼= H, |B| = |A| + j and A is dominating in G[B] – that is, each vertex
in B \ A is adjacent to some vertex in A. Each (A,B) ∈ P has some i ∈ [m]
for which G[A] ∼= Hi and B is contained in the neighbourhood of Hi, so
|P | =

∑m
i=1

(
αi

j

)
.

For j ≥ 0, let Hj denote the set of (h+ j)-vertex graphs that consist of H
along with j additional vertices, all of which are adjacent to at least one vertex
in the copy of H (we include each isomorphism type once). If (A,B) ∈ P , then
B corresponds to some H ′ ∈ Hj. By definition, there are nH′(G) vertex sets
B ⊆ V (G) with G[B] ∼= H ′. SinceHj andH are known to us, for eachH ′ ∈ Hj

we can calculate the number n(H,H ′) of dominating copies of H in H ′. Since

∑
H′∈Hj

n(H,H ′)nH′(G) = |P | =
m∑
i=1

(
αi

j

)
,

it only remains to show that we can determine nH′(G) from the ℓ-deck.
We may use Lemma 8 to reconstruct nH′(G) if |H ′| = h+j ≤ ℓ. For j ≤ N

and n ≥ 39, we find that

h+ j ≤ εn+N ≤ n− εn ≤ ℓ,

where the middle inequality follows from the fact that, using ε = 1/10, we
have √

2(1− ε)ε log(e/ε) + 2 log(2)/39 ≤ 1− 2ε.

This shows that we can reconstruct (4), and hence the number of compo-
nents isomorphic to H. In particular, doing so for every graph H with at most
n− ℓ vertices allows us to determine whether any component of G has at most
n− ℓ vertices, which we saw would hold if and only if G is disconnected.

We remark that the constant 9/10 can be improved slightly in the proof
above provided n is large enough. Indeed, the proof holds for any n and ε such
that √

2(1− ε)ε log(e/ε) + 2 log(2)/n ≤ 1− 2ε,

and, for large enough n, we can take ε ≈ 0.1069.

10



5 Reconstructing trees

We now work toward proving our main theorem on reconstructing trees, which
we recall below.

Theorem 4. Any n-vertex tree T can be reconstructed from Dn−r(T ) when
r < n

9
− 4

9

√
8n+ 5− 1.

The proof of Theorem 4 is spread across the following four subsections.
First, we introduce a general technique for counting balls around a subgraph,
which may be of independent interest. This strategy allows us to keep track of
copies of fixed graphs in T that have a specified distinguished subgraph, which
is a crucial ingredient of our proofs. This is done in Section 5.1.

In Section 5.2, we address the recognition problem and prove Theorem 6.
The remaining parts contain the proof of reconstruction, which is split into

two cases depending on whether or not the tree T contains a path that is
long relative to the order of the graph n and the number ℓ of vertices on each
card. Let the length of a path P be the number of edges in P , or equivalently
|V (P )| − 1. The diameter of a graph G is the maximum distance between two
vertices in G, and for a tree T this is the same as the length of a longest path.
When the diameter is less than about ℓ − 2n/3, we can apply an argument
based on reconstructing branches off the centre. For trees with diameter higher
than this (in fact there is some overlap between cases), we will split the tree
into two parts by removing a central edge, and then recognising these parts
and how to glue them back together.

Having recognised that every reconstruction of the deck is a tree, the high
diameter case is handled by the following lemma which we prove in Section
5.3.

Lemma 12. Let ℓ, k ∈ [n] with k > 4
√
ℓ + 2(n − ℓ). If T is an n-vertex tree

with diameter k − 1, then T can be reconstructed amongst connected graphs
from its ℓ-deck provided ℓ ≥ 2n

3
+ 4

9

√
6n+ 7 + 11

9
.

If T has low diameter, then we instead use the following lemma which we
prove in Section 5.4.

Lemma 13. Let ℓ, k ∈ [n] with k < ℓ − 2n+1
3

. If T is an n-vertex tree with
diameter k − 1, then T is reconstructible from its ℓ-deck.

The proof of Theorem 4 then amounts to verifying that the assumptions
are sufficient for recognition, and that our definitions of high and low diam-
eter together cover the full range. The latter calculation is the source of the
threshold on card size in the statement of Theorem 4.

Proof of Theorem 4. Let k be the number of vertices in the longest path in T .
The conditions on ℓ and n imply that ℓ ≥ 2n

3
+ 4

9

√
6n+ 7+ 11

9
. This allows us to

recognise that T is a tree by Theorem 6, and moreover that T is reconstructible
by Lemma 12 when k > 4

√
ℓ+2(n− ℓ). We show that the remaining k satisfy

the condition in Lemma 13. It suffices to verify that n− ℓ < n−3k−1
3

. The right

11



hand side is decreasing in k, and now k ≤ 4
√
ℓ+2(n−ℓ), so Lemma 13 applies

provided

n− ℓ <
n− 12

√
ℓ− 6(n− ℓ)− 1

3

which is equivalent to our assumed condition

ℓ >
8n

9
+

4

9

√
8n+ 5 + 1.

5.1 Counting extensions

Given a graph H, we define an H-extension to be a pair Hext = (H+, A)
where H+ is a graph and A ⊆ V (H+) is a subset of vertices with H+[A] ∼= H.
The idea is that H+ may contain multiple copies of H as induced subgraphs,
so we are picking out one in particular. The order of Hext = (H+, A) is
|Hext| = |V (H+)|.

We will usually work with H-extensions in a setting where H is an induced
subgraph of an ambient graph G, and in this case a natural family of H-
extensions can be obtained by considering neighbourhoods. Specifically, for
d ∈ N, the (closed) d-ball of an induced subgraph H of a graph G is

Bd(H,G) = G[{v ∈ V (G) : dG(v,H) ≤ d}],

the subgraph induced by the set of vertices of distance at most d from H
including the vertices of H itself. It is useful to view the d-ball of H as the
H-extension (Bd(H,G), V (H)).

Two H-extensions (G1, A1) and (G2, A2) are isomorphic if there is a graph
isomorphism φ : G1 → G2 with φ(A1) = A2. Let md(Hext, G) be the number
of copies of H in G whose d-ball is isomorphic (as an H-extension) to Hext. In
addition, we say that anH-extension (H+, A) is a sub-H-extension of (H++, B)
if H+ is an induced subgraph of H++ and A = B.

Our key counting result for extensions states that it is possible to recon-
struct md(Hext, G) from the ℓ-deck provided the d-balls of all copies of H are
small enough to appear on the cards.

Lemma 14. Let ℓ, d ∈ N and let G be a graph on at least ℓ + 1 vertices. Let
H be a graph on at most ℓ− 1 vertices. From the ℓ-deck of G, it is possible to
recognise whether the d-ball of every induced copy of H in G has fewer than ℓ
vertices, and if this is the case, the quantity md(Hext, G) is determined by the
ℓ-deck for any H-extension Hext.

Proof. Let H denote the set of graphs H+ such that |V (H+)| ≤ ℓ and there is
a copy H ′ of H in H+ in which all the vertices of H+ are at distance (in H+)
at most d from H ′. These represent all possible d-balls of H with at most ℓ
vertices, and the ones that appear in G will be a subset of these. Note that it
is not necessary (nor guaranteed) that all copies of H in H+ satisfy the above
distance condition, rather only that there is at least one such copy.

12



For any H+ ∈ H, we can reconstruct nH+(G) from the ℓ-deck using
Lemma 8. The d-balls of every induced copy of H have fewer than ℓ ver-
tices if and only if the nH+(G) = 0 for every H+ ∈ H with |H+| = ℓ, and
we can tell if this is the case. Suppose that indeed the d-balls around every
induced copy of H have fewer than ℓ vertices and set

k = max{|V (H+)| : H+ ∈ H, nH+(G) > 0}.

For a fixed H+ ∈ H with |V (H+)| = k, we observe that every copy H ′ of H
for which Bd(H

′, H+) ∼= H+ also satisfies Bd(H
′, G) ∼= H+ by the maximality

of k and the definition of H.
Let Hext denote the set of isomorphism classes of H-extensions (H+, A)

with H+ ∈ H. By the preceding observation, if Hext = (H+, A) ∈ Hext with
|H+| = k, then the number of copies of H whose d-balls are isomorphic to Hext

is the number of copies of H+ in G times the number of copies of H in H+

whose d-ball in H+ is isomorphic to Hext (as H-extensions). That is,

md(Hext, G) = nH+(G)md(Hext, H
+), (5)

Both of these quantities are reconstructible from the ℓ-deck, so we are done in
this case.

If |V (H+)| < k, then the d-ball of H may be strictly larger than H+ and
the formula (5) does not apply. This can be corrected by subtracting the
number of H ⊆ H+ for which H+ is not the d-neighbourhood of that copy of
H in G. To count these, we select each ‘maximal’ d-neighbourhood in turn,
and subtract one from the relevant count for each strictly smaller H+ that it
contains. Any leftover H+ that have not been accounted for must then be
maximal.

Explicitly, for H ′
ext ∈ Hext distinct from Hext, let n(Hext, H

′
ext) give the

number of sub-H-extensions of H ′
ext isomorphic to Hext. We claim that

md(Hext, G) = nH+(G)md(Hext, H
+)−

∑
H′

ext∈Hext

|H′
ext|>|Hext|

n(Hext, H
′
ext)md(H

′
ext, G).

Note that when |Hext| = k, the formula above agrees with (5). The terms
md(Hext, H

+) n(Hext, H
′
ext) and the domain of the summation are already

known to us, and we can reconstruct nH+(G) for all H+ ∈ H using Kelly’s
Lemma. Moreover, we may assume that we have reconstructed the terms
md(H

′
ext, H

+) for |H ′
ext| > |Hext| by induction with base case |Hext| = k, so

verifying the formula will complete the proof.
The first term of the formula nH+(G)md(Hext, H

+) counts the number of
pairs (A,B) ⊆ V (G)× V (G) such that

� G[B] is a copy of H+ (contributing 1 to nH+),

� A ⊆ B, and G[A] is a copy of H and is counted by md(Hext, H
+) for a

fixed copy of H+,

� B is a subset of the d-ball around A (i.e. B ⊆ Bd(G[A], G)).

13



Compared to md(Hext, G), the above term overcounts by 1 whenever B ⊊
Bd(G[A], G). Thus, it just remains to verify that the number of pairs with
B ̸= Bd(G[A], G) is given by∑

|H′
ext|>|Hext|

n(Hext, H
′
ext)md(H

′
ext, G).

To see that this is true, by definition the correction term counts triples (A,B,C)
with A ⊆ B ⊊ C ⊆ V (G) such that

� G[A] is a copy of H,

� G[B] is a copy of H+

� G[C] ∼= Bd(G[A], G).

Each pair (A,B) with B ̸= Bd(G[A], G) is in a unique such triple, namely with
C = V (Bd(G[A], G)); if B = Bd(G[A], G), then no suitable C with B ⊊ C can
be found.

As an aside, we mention that by setting d = 1 and considering the H-
extension (H,V (H)) in Lemma 14, one can count the number of components
isomorphic to H.

Corollary 15. Let H and G be graphs with |V (H)| ≤ ℓ−1 and n = |V (G)|. If
there is no copy of H in G for which |B1(H,G)| ≥ ℓ, then we can reconstruct
the number of components of G isomorphic to H from Dℓ(G).

5.2 Recognising trees

This section contains the proof of Theorem 6, which is an application of the
extension-counting result established in the previous section.

Theorem 6. For ℓ ≥ (2n+4)/3, the class of trees on n vertices is recognisable
from the ℓ-deck.

Proof. Let G be a graph and suppose we are given Dℓ(G). By Kelly’s Lemma
(Lemma 8), we can reconstruct the number m of edges provided ℓ ≥ 2. We
may suppose that m = n− 1, otherwise we can already conclude that G is not
a tree. It suffices to show that we can determine whether G contains a cycle,
or equivalently to determine whether G is connected.

If G has a cycle of length at most ℓ, then the entire cycle will appear on
a card and we can conclude that G is not a tree. We may therefore assume
that every cycle in G has length greater than ℓ. If the graph does not contain
a connected card, then the graph cannot be a tree, and so we may assume
that there is a connected card and the largest components in G have at least
ℓ vertices each. Since ℓ ≥ (2n + 4)/3, there is only one component A with at
least ℓ vertices and the other components have at most ℓ− 1 vertices.

Let d = ⌈ℓ− n/2− 1⌉. For a vertex x ∈ V (G), denote the d-ball around x
in G by Bd(x). Using Lemma 14 with H being the graph consisting of a single

14



vertex, we find that either there is an x ∈ V (G) with d-ball of order at least ℓ
or we can reconstruct the collection of d-balls (with ‘distinguished’ centres).

Suppose firstly that there exists x ∈ V (G) such that |Bd(x)| ≥ ℓ. We claim
that then G is a tree. Assume towards a contradiction that there is a cycle in
G. Since this must have more than ℓ vertices, any cycle in G must be contained
in the largest component A (the smaller components have order at most ℓ−1).
Let C be a shortest cycle in A. Similarly, note that x ∈ A since otherwise the
d-ball around x cannot have ℓ vertices. If |Bd(x) ∩ V (C)| ≤ 2d+ 1, then

|Bd(x)| ≤ n− |V (C) \Bd(x)| ≤ n− (ℓ+ 1) + (2d+ 1) ≤ ℓ− 1

by our choice of d. Thus, Bd(x)∩V (C) contains at least 2d+2 vertices. Choose
two vertices c1, c2 ∈ Bd(x) ∩ V (C) joined by a subpath C ′ of C (possibly C ′

is a single edge) such that C ′ does not contain any other vertex of Bd(x). Let
C ′′ be the other path from c1 to c2 in C. This must contain at least 2d other
vertices of Bd(x) ∩ C, so C ′′ is a path of length at least 2d + 1. However,
there is also a path P from c1 to c2 in the d-ball around x of length at most
2d, and this intersects C ′ only at the endpoints c1 and c2. Replacing the path
C ′′ with the path P forms a cycle which is strictly shorter than C, giving a
contradiction. Hence, G cannot have any cycles and must be a tree.

We may now assume that we can reconstruct the collection of d-balls and
will show how to recognise whether the graph is connected in this case. In any
component of order at most n− ℓ, there must be some vertex x such that the
distance from x to any vertex in the same component is at most (n− ℓ)/2. By
our choice of ℓ and d,

n− ℓ

2
≤ ℓ− n

2
− 2 ≤ d− 1.

Thus, if there is a component of order at most n − ℓ (which happens if and
only if G is not a tree), then there must be a d-ball with radius at most
d − 1. Conversely, if we discover such a d-ball, then we know that the graph
is disconnected since the d-ball must form a component due to its radius, yet
has at most ℓ − 1 vertices. Hence, G is a tree if and only if all d-balls have
radius d. This shows that we can recognise connectedness and completes the
proof.

5.3 High diameter

The main result in this section is Lemma 12, which states that a tree T is
reconstructible from its ℓ-deck provided it contains a sufficiently long path.

Removing an edge e from a tree T splits T into two components, and our
goal will be to recognise a pair of graphs (R,Rc) which are the components
left after removing an edge from T . However, it is not enough to know that T
is formed by connecting R and Rc with an edge, we also need to know which
vertices the edge is connected to, and we will actually look for pairs for which
we can also deduce this.

15



We are specifically interested in induced subgraphs that are connected to
the rest of the graph by a single edge, which leads us to consider copies of R
(and Rc) with this property. For a graph H, let a leaf H-extension be a pair
Hext = (H+, A) where

� H+ is obtained by adding a single vertex connected by a single edge to
a vertex of H, and

� A ⊂ V (H+) is such that H+[A] ∼= H.

This is a special case of the extensions defined in Section 5.1. We will refer
to the additional edge added to H to form H+ as the extending edge. Note
that if R is a component of T − e, then the 1-ball of T [V (R)] in T is a leaf
R-extension, but there may be multiple (non-isomorphic) leaf R-extensions in
T .

The extra edge in a leaf extension indicates where to glue, so we would be
done if we could identify two leaf extensions C = (C+, VC) and D = (D+, VD)
for which the vertex set of G is the disjoint union of V (C) and V (D). We
demonstrate in Lemma 16 a case where this can be done from Dℓ(G) using
counts of the relevant leaf extensions obtained by Lemma 14. Lemma 16 is not
specialised to trees with high diameter and the final step in proving Lemma 12
is showing that the lemma applies to trees with high diameter.

We say an edge e in a connected graph G is a bridge if the graph G − e
obtained from the removing the edge is disconnected.

Lemma 16. Let G be a connected graph with a bridge e, and R,Rc ⊆ G be the
components of G− e. If G has no induced subgraph H isomorphic to R or Rc

with |V (B1(H,G))| ≥ ℓ, then G is the only connected graph up to isomorphism
with the deck Dℓ(G).

Proof. We prove the lemma by describing an algorithm that takes in the deck
Dℓ(G) of a connected graph G, and either returns a connected graph, or a
failure. We will show that if the algorithm returns a graph G′, it must be
isomorphic to G. This shows that such a G is reconstructible since if Dℓ(G1) =
Dℓ(G2), then applying the algorithm to this shared deck will produce a single
graph G′ for which G′ ∼= G1

∼= G2. The condition in the hypothesis that G
has a suitable bridge e is only used to show that the algorithm will definitely
output a graph.

The idea of the procedure is to create a finite list of candidate graphs
guaranteed to contain both components of G − e, and then test all pairs of
such graphs glued together in every feasible way that could reconstruct G.
This latter step is refined by using leaf extensions to indicate how these gluings
occur. The key point is to show that we can identify when such a construction
actually produces G and then terminate.

Given any connected graph H on at most ℓ− 1 vertices and a deck Dℓ(G),
we can check directly from the cards whether there is a copy H ′ of H in G for
which |V (B1(H

′, G))| ≥ ℓ. Say that a graph H is confined if no such copy of it
exists. Then for every confined connected graph H and every leaf H-extension
Hext of H, we can apply Lemma 14 to reconstruct m1(Hext, G). Recall that

16



this is the number of copies of H in G whose 1-ball in G is obtained by adding
a pendant vertex connected at a specified vertex, so a positive value would
signal an extension that might correspond to a component of G − e (with
the extending edge corresponding to the bridge). To form our collection of
candidates, let Hext denote the isomorphism classes of all leaf H-extensions
Hext for which m1(Hext, G) > 0 and H is a confined connected graph.

We now loop over all pairs (Cext, Dext) of elements from Hext for which
|Cext| + |Dext| = n + 2 and |Cext| ≤ |Dext|. Let Cext = (C+, VC) and Dext =
(D+, VD) where C = C+[VC ] and D = D+[VD] denote the corresponding la-
belled subgraphs. Let N(Cext, Dext) be the number of copies of C in D whose
1-ball in D+ is a copy of C+. That is, we count the copies of C+ in D+ where
the extending edge of D+ is either unused or is the extending edge of C+.
If m1(Cext, G) ≥ N(Cext, Dext) + 1, then the algorithm outputs the graph G′

formed by taking disjoint copies of C+ and D+ and identifying their extending
edges as given by these extensions. If m1(Cext, G) < N(Cext, Dext) + 1, we
continue on to the next pair of elements of Hext. If we have checked every suit-
able pair of elements from Hext without outputting a graph, then we output a
failure.

Let us first verify that if the algorithm returns a graph, it must be isomor-
phic to G. In fact, this is true for any connected graph. We will later use our
assumptions on G to argue that the algorithm does output a graph when the
input is Dℓ(G), which shows that G is reconstructible.

It is useful to highlight that every leaf extension Dext = (D+, VD) with
m1(Dext, G) > 0 has a unique partner leaf extension, which we will denote by
Dc

ext = ((Dc)+, VDc), that produces a graph isomorphic to G when joined with
Dext as described above. Explicitly, if eD is the extending edge in Dext, then
Dc

ext is given by taking VDc = (VD)
c and setting (Dc)+ to be the complement

of D in G together with eD as an additional edge. Indeed, this is true when G
is any connected graph.

We now argue that any output graph G′ is isomorphic to G. Let (Cext, Dext)
be a pair that produces G′. If Cext

∼= Dc
ext as leaf extensions then G ∼= G′

by definition of Dc
ext, so suppose this is not the case. It is enough to show

that m1(Cext, G) < N(Cext, Dext) + 1, giving a contradiction to the fact that
we terminated when considering (Cext, Dext). We first claim that if a copy
of C contributes to m1(Cext, G) (in the sense that G[VC ] coincides with this
copy for a leaf extension counted by m1(Cext, G)), then it cannot use the edge
between D and Dc. To see this, note that since G is connected, both D and
Dc are connected. We have assumed that |V (C)| = |V (Dc)| ≤ |V (D)| and
Cext ̸∼= Dc

ext, so no copy of C can completely contain either D or Dc. This
means that if a copy of C were to use this edge, then its 1-ball would contain
at least one vertex from D and one from Dc meaning it does not contribute to
m1(Cext, G).

It now follows that

m1(Cext, G) = N(Cext, Dext) +N(Cext, D
c
ext). (6)

If Dc
ext ̸∼= Cext as we have assumed, then N(Cext, D

c
ext) = 0. Indeed, since no

17



copy of C uses the extending edge of (Dc)+, this would have to be the extend-
ing edge of C+ and we would have Cext

∼= Dext. This leaves m1(Cext, G) =
N(Cext, Dext) which gives the desired contradiction to the supposition that we
terminated when considering (Cext, Dext), so G′ must be isomorphic to G.

Finally, let us argue that the algorithm does terminate when the input is
Dℓ(G). From (6) we easily see that m1(Rext, G) = N(Rext, R

c
ext)+1, where Rext

and Rc
ext are as defined earlier. Our assumption on G guarantees that both of

these are inHext, and we are guaranteed to have at least one pair among our
candidates that will lead to termination.

We remark that the only place where we used that the existence of the
edge e which splits G into “nice” components R and Rc was to ensure that the
algorithm output a graph. One can try to use the algorithm to reconstruct
graphs whenever the deck is known to correspond to a connected graph, and
the algorithm will either output the graph, or a failure (in which case one needs
a different approach). We now show that any tree with large enough diameter
(depending on both n and ℓ) does have a bridge which splits the tree into
“nice” components, and so satisfies the required condition to be reconstructible
amongst connected graphs.

Proof of Lemma 12. Let k, ℓ ∈ [n] with k > 4
√
ℓ + 2(n − ℓ) and ℓ ≥ 2n

3
+

4
9

√
6n+ 7+ 11

9
. Let T be a tree and suppose that a longest path in T contains

exactly k vertices. We wish to show it has a suitable bridge satisfying the
assumptions of Lemma 16 so that we can conclude that it is reconstructible
from its ℓ-deck amongst connected graphs.

Fix a longest path in T with k vertices. Create two rooted subtrees R and
S = Rc by removing the central edge of the path if k is even, or one of the
two central edges if k is odd (and rooting the subtrees at the vertex which
had an incident edge removed). By Lemma 16, if T has no induced subgraph
H isomorphic to R or S with |V (B1(H,T ))| ≥ ℓ, then T is reconstructible
from Dℓ(T ). We assume, in order to derive a contradiction, that T contains
a copy S ′ of S with |V (B1(S

′, T ))| ≥ ℓ. Note that, since R contains at least
n− ℓ+ 2

√
ℓ− 1 vertices, S contains at most ℓ− 2 vertices and the 1-ball of S

contains at most ℓ− 1 vertices.
We will proceed by building a sequence of vertex-disjoint paths in S to

obtain a lower bound on the size of S, which leads to an upper bound on the
maximum length of a path in R and hence also an upper bound on k. Let
us sketch the main idea. Since the 1-ball around S ′ only extends one vertex
further along paths not in S ′, the existence of a long path in T that is not in
S ′ would indicate that this 1-ball misses lots of vertices and so cannot be too
big. This means that S ′ should contain a lot of our chosen longest path, and
S ′ should reach a long way into R. However, the long path in S ′ that reaches
into R corresponds to a long path in S (under the isomorphism that makes it
a copy), and S ′ must also contain many vertices from this path. These form
another long path in S, and S ′ must reach a long way down this path as well.
Continuing this argument eventually forces S to be so large that there are

18



not enough vertices remaining to form a path of sufficient length in R for our
assumption on k to be true.

Set r = n − ℓ. Proceeding as laid out above, let φ : S → S ′ be an
isomorphism, and let P0 be a path in R containing at least (k − 1)/2 vertices
which starts at the root of R. Consider the intersection of S ′ with the path
P0. Since V (S ′) ̸= V (S), this intersection must be non-empty, and it must be
connected since both T and S are trees, so S ′ and P0 intersect on a subpath Q0.
Moreover, the intersection of B1(S

′, T ) and P0 must also be a path with at most
|V (Q0)|+ 2 vertices. This means that there are at least |V (P0)| − |V (Q0)| − 2
vertices on P0 which are not in B1(S

′, T ). We are assuming that T has at most
r vertices which are not in B1(S

′, T ), so |V (Q0)| ≥ |V (P0)| − r − 2.
Now let P1 be the path φ−1(V (Q0)) in S and note that P1 is vertex-disjoint

from P0 as P0 is contained in R. Define Q1 to be the intersection of S ′ with P1,
which is again a path. Furthermore, the intersection of B1(S

′, T ) and P1 is also
a path, this time with at most |V (Q1)|+2 vertices. The number of vertices of
P1 and P0 which are not in B1(S

′, T ) is at least |V (P0)|+ |V (P1)| − |V (Q0)| −
|V (Q1)|−4, which gives the inequality |V (Q0)|+|V (Q1)| ≥ |V (P0)|+|V (P1)|−
r − 4. Since |V (Q0)| = |V (P1)|, this becomes |V (Q1)| ≥ |V (P0)| − r − 4.

We now continue to iteratively build our sequence of paths Pi, together
with the sequence of subpaths Qi restricted to S ′, as follows: given Pi and
Qi, let Pi+1 := φ−1(V (Qi)) and set Qi+1 = Pi+1 ∩ S ′. We first note that Pi+1

is disjoint from P0, . . . , Pi. Indeed, since P0 is contained in R, Pi+1 cannot
intersect P0. If Pi+1 intersects a path Pj, then Qi must intersect Qj−1 which
in turn implies Pi intersects Pj−1. Hence, the paths are disjoint by induction.
By the finiteness of T , we must eventually reach a j such that |V (Qj−1)| =
|V (Pj)| = 0. At this point, we have disjoint paths P1, . . . , Pj in S that satisfy
|V (Pi)| = |V (Qi−1)| ≥ |V (P0)| − r − 2i for all i = 1, . . . , j. In particular,
setting i = j to use the fact that |V (Pj)| = 0 shows that j ≥ (|V (P0)| − r)/2.
We may then calculate

|V (S)| ≥ |V (P1)|+ · · ·+ |V (Pj)|

≥
⌊(|P0|−r)/2⌋∑

i=1

(|P0| − r − 2i)

= (|P0| − r)

⌊
|P0| − r

2

⌋
− 2

(
⌊(|P0| − r)/2⌋+ 1

2

)
=

⌊
|P0| − r

2

⌋⌈
|P0| − r − 2

2

⌉
≥ (|P0| − r)(|P0| − r − 2)

4
,

where we have used |P0| as shorthand for |V (P0)|.
Since |V (S)| ≤ n− |V (P0)|, we must have |V (P0)| ≤

√
4n− 4r + 1+ r− 1

and k ≤ 2|V (P0)|+1 ≤ 2
√
4n− 4r + 1+2r− 1. Finally, note that 2

√
x+ 1−

1 ≤ 2
√
x for all x ≥ 1 to find k ≤ 4

√
ℓ + 2r, a contradiction. The same

argument shows that T has no copy R′ of R with |V (B1(R
′, T ))| ≥ ℓ. Hence,

by Lemma 16 we can reconstruct T from Dℓ(T ).

19



5.4 Low diameter

The purpose of this section is to prove Lemma 13. Specifically, we will show
that any tree T with diameter k−1 can be reconstructed from its ℓ-deck for any
ℓ ∈ [n] such that n−ℓ < n−3k+1

3
if k is odd or n−ℓ < n−3k−1

3
if k is even, which

together imply the statement directly. These conditions are equivalent to odd
k < ℓ− 2n−1

3
and even k < ℓ− 2n+1

3
. The reason for dependence on the parity

is that, broadly, our strategy for reconstruction is to separately reconstruct
branches of the tree emanating from its centre: if k is odd, the centre of T
is the vertex in the middle of each longest path, and if k is even, the centre
consists of the two middle vertices. The centre is unique, so in particular it
does not depend on the choice of longest path.

The case when k is odd (so the diameter is even) is easier to work with,
and the follow lemma provides a simple reduction that will allow us to proceed
with this assumption.

Lemma 17. If all trees with n+1 vertices and even diameter are reconstructible
from the cards in their (ℓ+ 1)-decks that contain a longest path, then all trees
with n vertices and odd diameter are reconstructible from the cards in their
ℓ-decks that contain a longest path.

Proof. Let T be any tree with n vertices and odd diameter. This means that it
has two middle vertices joined by one central edge. Let T ′ be the tree obtained
by subdividing the central edge of T , noting that it has n+1 vertices and even
diameter. We can obtain the cards in the (ℓ + 1)-deck of T ′ that contain a
longest path by taking the cards in the ℓ-deck of T that contain a longest path
and subdividing the central edge, and thus reconstruct T ′ by assumption. It is
then straightforward to recover T by recognising the central vertex in T ′ and
smoothing out the vertex created by subdivision.

Let us assume for the remainder of this section that T is a tree with n
vertices, the number k of vertices in a longest path in T is odd, and k < ℓ− 2n−1

3
.

This means that k + 1 ≤ ℓ so we can reconstruct k from the ℓ-deck, which we
shall use freely, and that T has a unique central vertex.

Given a vertex u ∈ T with neighbours v1, v2, . . . , va, let the branches at
u be the rooted subtrees B1, B2, . . . , Ba where Bi is the component of T − u
that contains vi, rooted at vi. An end-rooted path is a path rooted at an
endvertex of the path. In this section, all longest paths Pk will be rooted at
the central vertex c, and are hence not end-rooted, whilst all of the shorter
paths mentioned will be end-rooted. Given two rooted trees T1 and T2 with
roots u and v respectively, let T1 ⌢ T2 denote the (unrooted) tree given by
adding an edge between u and v (see Figure 2).

By restricting our attention to the cards that have diameter k− 1, we may
assume that we can always identify the centre of the graph. Our basic strategy
is to reconstruct the branches at the centre separately, knowing that we can
later join them together using the centre as a common point of reference. This
can be done via a counting argument when all branches at the centre have at
most ℓ − k vertices, but when one branch is ‘heavy’ and contains many (at

20



⌢ =

T1 T2 T1 ⌢ T2

Figure 2: An example of the tree grafting operation T1 ⌢ T2 .

least ℓ − k) of the vertices a slightly more finicky version of the argument is
required to reconstruct this branch as it cannot be seen on a single card. It is
possible to recognise these cases from the ℓ-deck. We first address the simpler
situation without heavy branches to illustrate the method.

Lemma 18. If T is a tree with even diameter k − 1 for which every branch
from the centre has fewer than ℓ − k vertices, then T is reconstructible from
the subset of the ℓ-deck consisting only of cards that contain a copy of Pk.

Proof. Let c be the central vertex of T , and let B = {B1, . . . , Ba} be the
branches at c that we wish to reconstruct. If one of the branches at c has at
least ℓ−k vertices, then there must be a card containing a longest path with a
branch of at least ℓ−k vertices (the branch and the path need not be disjoint,
but their union contains at most ℓ vertices). Thus we can recognise from the
ℓ-deck that all branches in B have fewer than ℓ− k vertices.

We first reconstruct all branches that are not end-rooted paths. For any
fixed B which is a rooted tree but not an end-rooted path, we will use Lemma 9
to count each branch at c isomorphic to B once for every Pk in T . Dividing
this number, denoted NB, by the number nPk

(T ) of copies of Pk in T then tells
us the multiplicity of B in T (which may be zero). Note that nPk

(T ) can be
determined by Kelly’s Lemma as k < ℓ, so it suffices to reconstruct NB.

Following the preceding outline, fix B to be any rooted tree that is not an
end-rooted path. We will actually determine NB in two parts. Let πB be the
number of pairs consisting of one copy B′ of B that is a branch at c, and one
copy P ′

k of a longest path that is disjoint from B′. Similarly, let τB count pairs
(B′, P ′

k) where the copy P ′
k intersects B′. It is clear that NB = πB + τB.

We begin with πB. Let G be the family of all n-vertex trees with diameter
k−1 and where all branches from the centre have fewer than ℓ−k vertices. Let
F be the family of graphs of the form Pk ⌢ S, where S is a non-empty rooted
tree with less than ℓ−k vertices that is not an end-rooted path and Pk is rooted
at its central vertex (see Figure 3). Fix G ∈ G and consider some F ∈ F . If
F ′ = P ′

k ⌢ S ′ is a copy of F in G, then it is contained in a unique maximal
F -subgraph, namely P ′

k together with the unique branch B′ containing S ′.
Note that this would not be true if end-rooted paths were allowed, since the
resulting F ′ might then also be contained in a different maximal F -subgraph
P ′′
k ⌢ B′′ where S ′ is contained in the P ′′

k and B′′ is a branch that contains
half of the original P ′

k. Also, since B′ has fewer than ℓ − k vertices, these
maximal elements have fewer than ℓ vertices and are therefore in F . Thus, by
Lemma 9 we can reconstruct the number of F -maximal copies of each F in G
from Dℓ(G). This is non-zero for F = Pk ⌢ S if and only if πS ̸= 0.

21



Now let F = Pk ⌢ B. Since T ∈ G and F ∈ F , we may reconstruct the
number of F -maximal copies of F in T as above. This is precisely πB. To see
this, consider a particular copy B′ of B that occurs as a branch and observe
that F occurs as a maximal F -subgraph with this B′ as the copy of B once
for every longest path in the tree which avoids B′.

There is a similar argument to determine τB. Keeping G as before, let F ′ be
the family of graphs of the form P(k−1)/2+1 ⌢ S where S is a rooted tree which
contains an end-rooted P(k−1)/2, but is not itself an end-rooted path. Again,
an element F = P(k−1)/2+1 ⌢ S is F ′-maximal when S is an entire branch,
and for any G ∈ G and F ∈ F ′ we can reconstruct the number of F ′-maximal
copies of each F in G by Lemma 9. This time there is at least one F ′-maximal
copy of F = P(k−1)/2+1 ⌢ S if and only if G has a branch isomorphic to S
(although we do not need to use both directions explicitly).

Let mF ′ be the number of F ′-maximal copies of F ′ = P(k−1)/2+1 ⌢ B in
T , which we can reconstruct as argued above. A particular copy B′ of B that
occurs as a branch contributes 1 to mF ′ for each copy of P(k−1)/2+1 that starts
at the central vertex c and is disjoint from B′. Thus, letting nP •(B) be the
number of end-rooted copies of P(k−1)/2+1 in B′ with roots coinciding (this
is the same for any copy of B and does not depend on the deck), one can
construct all of the copies of longest paths that intersect B′ by gluing together
one P(k−1)/2+1 from inside B′ and one that is disjoint from it. Doing so for
every copy of B shows that we can reconstruct τB = mF ′ ·nP •(B). The number
of copies of B that occur as a branch at c can then be reconstructed as

NB

nPk
(T )

=
πB + τB
nPk

(T )
.

It remains to determine the number of branches isomorphic to an end-
rooted path Pi, which we do using the fact that we know all of the other
branches not of this form. Starting with j = (k − 1)/2, this being the max-
imum possible length of a path branch, we compare the number of copies of
P(k−1)/2+j+1 in T to the number of copies in the graph T̃ obtained by gluing
all of the known branches at a single vertex c. The former count can be ob-
tained by Kelly’s Lemma, and the latter by directly inspecting T̃ . If there are
more copies in T than in the current T̃ , then there must be at least one more
end-rooted Pj as a branch so we add one copy to our list of known branches.

We then repeat this step with the same j but a new T̃ updated to include this
new path branch. If the counts match, meaning all copies of P(k−1)/2+j+1 in

G are already present in T̃ , then reduce j by 1 and continue iteratively until
j = 0. Note that it is important that we handle the different path lengths in
this order. At this point, we have reconstructed all branches and the final T̃
is exactly T .

We now consider the case where one of the branches at the centre of T has
at least ℓ−k vertices. This is so many, in fact, that we can find a card showing
all the other branches at the centre in their entirety, which then reduces the
problem to reconstructing the large branch. In order to do this, we will move

22



c

S

Pk

∈ F c

S

P k−1
2 +1

∈ F ′

Figure 3: Elements of F and F ′.

c

B′

P k−1
2 +1

Figure 4: A tree containing three longest paths that avoid B′ (so πB = 3),
and three longest paths that use B′ consisting of a P(k−1)/2+1 outside B′ and
a P(k−1)/2 inside (so τB = 3).

the “centre” one step inside the branch and continue doing this until no branch
at the new centre is too big. This collection of branches can be reconstructed by
essentially applying the proof of the previous lemma with minor modifications.
Importantly, the condition that T has small diameter ensures that we do not
have to take too many steps away from the true centre.

The following lemma sets up for this process. We shall call a branch i-heavy
if it contains at least ℓ− k− i vertices (a heavy branch is 0-heavy), and say it
is outward if it does not contain the centre of the tree. When we wish to talk
about a branch at a vertex within a specific card, we will call it a partial branch
to emphasise that it need to not be a branch of T . Recall that r := n− ℓ.

Lemma 19. Let T be a tree with even diameter k − 1 (where k < ℓ− 2n−1
3

is
odd) and central vertex c, and suppose we are given only the cards in Dℓ(T )
that contain a copy of Pk. For any 0 ≤ i ≤ (k − 1)/2,

(i) each vertex can have at most one i-heavy branch;

(ii) there is at most one vertex ci at distance i from c with an i-heavy outward
branch;

(iii) we can recognise whether there is a vertex ci at distance i from c with an
i-heavy outward branch;

(iv) if there is such a ci, then we can find a card among those we are given
on which we can identify ci and the root of its i-heavy branch, and all
smaller branches at ci are present in their entirety. In particular, we
can completely determine the isomorphism classes of all of these smaller
branches.

23



Proof. Since i ≤ k−1
2

and k < ℓ− 2n−1
3

by assumption, we first deduce that

ℓ− k − i ≥ ℓ− 3k − 1

2
> ℓ−

3
(
ℓ− (2n−1)

3

)
− 1

2
=

2n− ℓ

2
>

n

2
.

This proves (i), as the branches at a vertex are pairwise disjoint. Similarly,
if two distinct vertices ci and c′i are both at distance i from c, then the only
branch at ci that can share a vertex with a branch at c′i is that containing c.
Thus, the previous calculation also proves (ii).

For (iii), suppose that T does have a vertex ci at distance i from c with
an i-heavy branch B not containing c. The subtree formed by taking a Pk

together with the path of length i from c to c′ and any (ℓ − k − i)-vertex
subtree of B containing the root has at most k + i + (ℓ − k − i) = ℓ vertices.
On the other hand, if a card C has a subtree with a Pk (allowing us to identify
c) and a vertex ci at distance i from c with a partial outward branch that has
at least ℓ− k− i vertices, then we would be done. It follows that T has such a
vertex ci and i-heavy branch if and only if it has a card containing a subtree
of this form.

Assuming that there exist ci and B as above, we claim that the desired card
in (iv) can be found as follows: from among the cards we have (all with a copy
of Pk so we can identify c), take a connected card C in which the maximum
number of vertices in any partial outward branch at any vertex with distance
i from c is as small as possible. There are only r + k + i vertices not in B, so
C must still see at least ℓ− r − k − i vertices of B. On the other hand, every
other partial branch at ci has at most r + k + i vertices, which is less than
ℓ− k − i− r since

r + k + i ≤ n− ℓ+ k +
k − 1

2
<

2n− 2ℓ+ 3(ℓ− 2n−1
3

)− 1

2
=

ℓ

2
.

This means that we can identify the vertex ci as the unique (by (i) and (ii))
vertex at the correct distance from c with a partial outward branch of size at
least ℓ−k− i− r, and the root of this partial branch is the root of the i-heavy
branch in T . Moreover, by the minimality of the count used to select C, all
other partial branches at ci must actually be present in their entirety; that is,
they are isomorphic to the non-i-heavy branches at ci in T .

Lemma 20. If T is a tree of diameter k − 1 (where k < ℓ − 2n−1
3

is odd)
and central vertex c, then T is reconstructible from the subset of the ℓ-deck
consisting only of cards which contain a copy of Pk.

Proof. With i = 0 in Lemma 19, we can recognise whether there is a branch
at c with at least ℓ−k vertices. Let us suppose there is, since we are otherwise
done by Lemma 18 (or equivalently by setting j = 0 and proceeding with the
present proof).

To reconstruct the heavy branch at c := c0, we construct a sequence of
vertices c0, c1, c2, . . . to act as new “centres” until the branches at some cj are
all small enough for us to apply Lemma 9. For the first step, let c1 be the root

24



S

...

Pk

c c1 c2

c3

cj

S

...

Pk

c

c1

cj

Figure 5: Potential elements of F along with their ‘moving centres’.

of the heavy branch, which is adjacent to c0. Applying Lemma 19 with i = 1,
we can recognise whether any neighbour of c0 has a 1-heavy outward branch.
If not, then the branches at c1 all have less than ℓ − k − 1 vertices and we
terminate with j = 1. Else if there is such a 1-heavy outward branch, then it
follows from statement (ii) of the lemma that it must be at c1. In addition,
statement (iv) allows us to determine all but the 1-heavy branch at c1.

Now set c2 to be the vertex in the 1-heavy branch that is adjacent to c1
and repeat the argument. In the ith step, we terminate if every branch at ci
has weight less than ℓ− k − i, and otherwise we completely determine all but
the i-heavy branch and proceed by setting ci+1 to be the root of this branch.
The case at hand is recognisable by Lemma 19 and we can also reconstruct
the smaller branches at each step provided i ≤ (k − 1)/2. To see that this
condition is maintained, we note that our procedure builds a path in T with
one endvertex at c. Since each step increases the length of this path by 1 and
the longest path in T contains k vertices, we can take at most (k− 1)/2 steps
before terminating.

Suppose the process terminates at the jth step, where j ≤ (k − 1)/2. The
remainder of the argument closely follows the proof of Lemma 18. Let G be
the family of n-vertex trees with diameter k−1, and F be the family of graphs
that can be constructed as follows. Let i ∈ {0, . . . , j − 1}, let v1, . . . , vk be
the vertices in a Pk and let u1, . . . , uj−i be the vertices in a (disjoint) Pj−i. A
graph in F is formed by adding an edge from u1 to v k+1

2
+i, and then attaching a

rooted tree S which is not an end-rooted path to the vertex uj−i. The condition
that the attached tree is not a path ensures that it is easy to identify Pk and
the added tree in any F -graph. An example is given in Figure 5.

Each F -subgraph of G ∈ G is contained in a unique maximal F -subgraph,
given by extending the tree attachment to the whole of the relevant branch at
uj−i. Applying Lemma 9 allows us to determine the number of occurrences of
each maximal F -subgraph, as we did in the proof of Lemma 18.

At this point, each branch B′ has contributed one to the relevant count
for each copy of Pk which does not use B′, so we again need to determine the
number of Pk which use B′. This can be done using an identical argument to
that in Lemma 18 except replacing c with cj, replacing P(k−1)/2+1 ⌢ S with
P(k−1)/2+j+1 ⌢ S and suitably adjusting S.

We have now identified the total number of branches of each isomorphism
class from vertices at distance j from c (except those which are end-rooted
paths), although we do not know they are all branches at cj. However, we

25



have already reconstructed all of the tree except for the branches at cj, so
we can subtract the counts of all the appropriate branches not at cj from the
total: the remainder must be attached at cj.

Finally, the end-rooted paths attached at cj can be reconstructed using the
argument from the end proof of Lemma 18.

Lemma 13. Let ℓ, k ∈ [n] with k < ℓ − 2n+1
3

. If T is an n-vertex tree with
diameter k − 1, then T is reconstructible from its ℓ-deck.

Proof. If k is odd, then by Lemma 20 we can reconstruct any n-vertex tree
with diameter k − 1 using only the cards in its ℓ-deck that contain a longest
path provided k < ℓ − 2n−1

3
, which is slightly better than the bound claimed

in the theorem. The trees for which k is even are then also reconstructible by
Lemma 17, provided k < ℓ+ 1− 2(n+1)−1

3
− 1 = ℓ− 2n+1

3
.

6 Conclusion

The example in Figure 1 shows that the conjectured lower bound for recon-
structing trees of ⌊n/2⌋+ 1 is false for n = 13, but the bound is still the best
known for all other values of n. It may well be the case that the conjecture is
asymptotically true, or even true exactly for large enough n.

Problem 1. Is there a function ℓ(n) = (1/2 + o(1))n such that all n-vertex
trees can be reconstructed from their ℓ(n)-deck?

For the problem of reconstructing the degree sequence, let ℓ = ℓ(n) be the
smallest integer such that the degree sequence of every n-vertex graph can
be reconstructed from the ℓ-deck. We have shown in Theorem 7 that ℓ(n) ≤√
2n log(2n)+1. It is easy to obtain a lower bound of form ℓ(n) = Ω(

√
log n):

indeed, each ℓ-vertex graph appears at most
(
n
ℓ

)
times in the ℓ-deck, so there are

at most (nℓ)2
ℓ2

possible ℓ-decks. There are Ω(4n/n) possible degree sequences

as determined by Burns [11], and hence we need 2log2(n)ℓ2
ℓ2 ≥ 22n−log2(n), which

implies the bound. By considering restricted graph classes, this can be slightly
improved, but it would be interesting to see whether the lower bound can be
improved to nε for some ε > 0.

In a different direction, it would be interesting to determine how large ℓ
needs to be in order to recognise k-colourability of a graph on n vertices from
its ℓ-deck. A special case of a result of Tutte [36] from 1979 states that the
chromatic number of a graph is reconstructible when ℓ = n − 1, but nothing
more is known in the direction of taking smaller cards. An interesting starting
point would be to pinpoint the threshold for recognising whether a graph is
bipartite (2-colourable). In this case, a lower bound of ⌊n/2⌋ follows from the
example of Spinoza and West [33] mentioned in the introduction (consider a
path and the disjoint union of an odd cycle and a path). Manvel [27] proved
that the (n− 2)-deck suffices, but it seems likely that it should be possible to
determine bipartiteness when a linear number of vertices are removed. More
generally, for fixed k, it may even be true that k-colourability is recognisable
from the cn-deck for some c = c(k) < 1.

26



Acknowledgements

We would like to thank Doug West and the anonymous reviewer for their
helpful suggestions.

References

[1] T. Andreae. On the reconstruction of locally finite trees. Journal of Graph
Theory, 5(2):123–135, 1981.

[2] T. Andreae. On reconstructing rooted trees. Journal of Combinatorial
Theory Series B, 62(2):183–198, 1994.

[3] B. Bollobás. Almost every graph has reconstruction number three. Journal
of Graph Theory, 14:1–4, 1990.

[4] J. A. Bondy. On Kelly’s congruence theorem for trees. Mathematical
Proceedings of the Cambridge Philosophical Society, 65(2):387–397, 1969.

[5] J. A. Bondy. A graph reconstructor’s manual. Surveys in Combinatorics,
London Mathematical Society Lecture Note Series, 166:221–252, 1991.

[6] J. A. Bondy and R. L. Hemminger. Reconstructing infinite graphs. Pacific
Journal of Mathematics, 52:331–340, 1974.

[7] J. A. Bondy and R. L. Hemminger. Graph reconstruction: a survey.
Journal of Graph Theory, 1(3):227–268, 1977.

[8] P. Borwein, T. Erdélyi and G. Kós. Littlewood-type problems on [0, 1].
Proceedings of the London Mathematical Society, 79(1):22–46, 1999.

[9] P. Borwein and C. Ingalls. The Prouhet-Tarry-Escott problem revisited.
L’Enseignement Mathématique, 40(2):3–27, 1994.

[10] N. Bowler, J. Erde, P. Heinig, F. Lehner and M. Pitz. A counterexample
to the reconstruction conjecture for locally finite trees. Bulletin of the
London Mathematical Society, 49(4):630–648, 2017.

[11] J. M. Burns. The number of degree sequences of graphs. PhD thesis,
Massachusetts Institute of Technology, 2007.

[12] Z. A. Chernyak. Some additions to an article by B. Manvel: “Some basic
observations on Kelly’s conjecture for graphs” (Russian). Vestsi Akadèmii
Navuk Belarusi. Seryya Fizika-Matèmatychnykh Navuk, 126:44–49, 1982.

[13] W. B. Giles. The reconstruction of outerplanar graphs. Journal of Com-
binatorial Theory Series B, 16(3):215–226, 1974.

[14] W. B. Giles. Reconstructing trees from two point deleted subtrees. Dis-
crete Mathematics, 15(4):325–332, 1976.

27



[15] D. L. Greenwell and R. L. Hemminger. Reconstructing the n-connected
components of a graph. Aequationes Math., 9:19–22, 1973.

[16] F. Harary and E. Palmer. The reconstruction of a tree from its maximal
subtrees. Canadian Journal of Mathematics, 18:803–810, 1966.

[17] F. Harary, A. J. Schwenk and R. L. Scott. On the reconstruction of count-
able forests. Publications de l’Institut Mathématique (Beograd) (N.S.),
13(27):39–42, 1972.

[18] P. J. Kelly. On isometric transformations. PhD thesis, University of
Wisconsin, 1942.

[19] P. J. Kelly. A congruence theorem for trees. Pacific Journal of Mathe-
matics, 7(1):961–968, 1957.

[20] A. V. Kostochka, M. Nahvi, D. B. West and D. Zirlin. 3-regular graphs
are 2-reconstructible. arXiv:1908.01258 preprint, 2019.

[21] A. V. Kostochka, M. Nahvi, D. B. West and D. Zirlin. Degree lists and
connectedness are 3-reconstructible for graphs with at least seven vertices.
Graphs and Combinatorics, 36:491–501, 2020.

[22] A. V. Kostochka, M. Nahvi, D. B. West and D. Zirlin. Acyclic graphs with
at least 2ℓ+1 vertices are ℓ-recognizable. arXiv:2103.12153 preprint, 2021.

[23] A. V. Kostochka and D. B. West. On reconstruction of graphs from the
multiset of subgraphs obtained by deleting ℓ vertices. IEEE Transactions
on Information Theory, 67(6):3278 – 3286, 2021.

[24] J. Lauri. The reconstruction of maximal planar graphs. Journal of Com-
binatorial Theory Series B, 30(2):196–214, 1981.

[25] J. Lauri. Proof of Harary’s conjecture on the reconstruction of trees.
Discrete Mathematics, 43(1):79–90, 1983.

[26] B. Manvel. Reconstruction of trees. Canadian Journal of Mathematics,
22(1):55–60, 1970.

[27] B. Manvel. Some basic observations on Kelly’s conjecture for graphs.
Discrete Mathematics, 8(2):181–185, 1974.

[28] V. Müller. Probabilistic reconstruction from subgraphs. Commentationes
Mathematicae Universitatis Carolinae, 17:709–719, 1976.

[29] W. Myrvold. The ally-reconstruction number of a tree with five or more
vertices is three. Journal of Graph Theory, 14(2):149–166, 1990.

[30] C. S. J. A. Nash-Williams. Reconstruction of infinite graphs. Discrete
Mathematics, 95(1-3):221–229, 1991. Directions in infinite graph theory
and combinatorics (Cambridge, 1989).

28



[31] V. Nýdl. A note on reconstructing of finite trees from small subtrees. Acta
Universitatis Carolinae. Mathematica et Physica, 31(2):71–74, 1990.

[32] V. Nýdl. Finite undirected graphs which are not reconstructible from
their large cardinality subgraphs. Discrete Mathematics, 108(1-3):373–
377, 1992.

[33] H. Spinoza and D. B. West. Reconstruction from the deck of k-vertex
induced subgraphs. Journal of Graph Theory, 90(4):497–522, 2019.

[34] R. Taylor. Reconstructing degree sequences from k-vertex-deleted sub-
graphs. Discrete Mathematics, 79(2):207–213, 1990.

[35] C. Thomassen. Reconstructing 1-coherent locally finite trees. Commen-
tarii Mathematici Helvetici, 53(4):608–612, 1978.

[36] W. T. Tutte. All the King’s Horses (A Guide to Reconstruction). In J. A.
Bondy and U. S. R. Murty, editors, Graph Theory and Related Topics.
Academic Press, New York, 1979.

[37] S. M. Ulam. A Collection of Mathematical Problems, volume 8 of Inter-
science tracts in pure and applied mathematics. Interscience Publishers,
1960.

29


