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Abstract

The Rademacher random walk associated with a deterministic sequence
(an)n≥1 is the walk which starts at zero and, at step i, independently steps
either up or down by ai with equal probability. We continue the study
begun by Bhattacharya and Volkov in 2023 into the transience or recurrence
of one-dimensional Rademacher random walks. In particular, we show
that if the sequence of step sizes is bounded, the walk is weakly recurrent,
meaning that it returns infinitely often to a random finite interval, while if
the step sizes tend to infinity arbitrarily slowly the walk may be transient.
On the other hand, we show that the step sizes may grow arbitrarily fast
and still give a weakly recurrent random walk, and this is still true even
if we restrict to non-decreasing step sizes. However, if an = nα+o(1) for
some α > 1/2, we show that the walk is transient. We also show that the
bound on α is tight by giving an example where an = Θ(n1/2) and the
walk is weakly recurrent.

Keywords: inhomogeneous random walk, anti-concentration, modular Erdős–
Littlewood–Offord inequality

1 Introduction

Throughout this paper, let ϵ1, ϵ2, . . . be a sequence of i.i.d. Rademacher(1/2)
random variables, taking the values ±1 each with probability 1/2. We will
refer to these simply as Rademacher random variables (dropping the 1/2). Let
(an)n≥1 be a deterministic sequence of non-negative real numbers, and define
the associated Rademacher random walk (Xn)n≥0 by

Xn =

n∑
k=1

ϵkak.
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When all of the ak take the value 1, the associated Rademacher random walk is
exactly the simple symmetric random walk in one dimension, and the recurrence
of this random walk is a fundamental result in any introductory probability
course. However, by simply changing the sequence of step sizes (an), the problem
becomes much less elementary and the behaviour of the Rademacher random
walk is still unknown in many cases, including the simple-looking case where
an = nα.

We mention that recurrence and transience of two-dimensional Rademacher
random walks has been studied recently by Bhattacharya and Volkov in [4]. In
this paper we will focus on the one-dimensional case, continuing the study begun
by Bhattacharya and Volkov in [3].

If a particular sample of a Rademacher random walk satisfies {Xn ≤ C}
infinitely often (i.o.), we call it C-recurrent. When X is almost surely 0-recurrent
we say X is recurrent. Note that C-recurrence is not necessarily a tail event.
Indeed, if we take the sequence (an)n≥1 where a1 = 1, a2 = 1 and ai = 3 for all
i ≥ 2, then whether the walk returns to zero i.o. depends on the value after two
steps. However, the event {∃C : |Xn| ≤ C i.o.} is a tail event, and we shall call
a Rademacher random walk weakly recurrent if the probability of this event is 1.
Otherwise, we will call the walk transient. Finally, we say that a random walk is
topologically recurrent if its range is almost surely dense in R.

Note that weak recurrence of the Rademacher random walk is unaffected by
making any finite number of changes, deletions, or insertions to (an)n≥1.

One interesting class of Rademacher random walks is those whose step
sizes (an)n≥1 satisfy

∑
n a

2
n < ∞ but

∑
n an = ∞. In this case, Xn almost

surely converges to a random limit by the p = 2 case of Doob’s Lp-martingale
convergence theorem. However, the distribution of the limit has unbounded
support, so X is weakly recurrent but there is no C <∞ such that X is almost
surely C-recurrent.

Our main motivation is the following problem.

Problem 1. What conditions on the growth rate of (an) guarantee that the
associated Rademacher random walk is transient? What growth conditions
guarantee that the Rademacher random walk is weakly recurrent?

In Bhattacharya and Volkov [3] it is shown that the Rademacher random
walk is C-recurrent for every C > 0, and hence weakly recurrent, in the following
cases:

• an = log n, and

• an = ⌊(logγ n)β⌋ for constants γ > 1 and 0 < β ≤ 1.

Two transient cases with integer step sizes are also given:

• the steps (an)n≥1 are all distinct integers, and

• an = ⌊nβ⌋ for any constant 0 < β < 1.

2



One particularly natural case of Problem 1 is to assume that an ≈ nα for
some α > 0. With this constraint, we can ask whether there are values of
α for which we can guarantee that the walk is transient or weakly recurrent.
Combining the two transience results from [3], we see that the Rademacher walk
with step sizes an = ⌊nα⌋ is transient for all α > 0. Hence, there is no α > 0 for
which the condition an ≈ nα implies the walk is weakly recurrent. In contrast,
our main result shows that there are values of α for which this growth rate
guarantees that the walk is transient.

Theorem 1. Let (an)n≥1 be a sequence and suppose that an = nα+o(1) for some
α > 1/2. Then the associated Rademacher random walk is transient.

The condition on α in Theorem 1 is best possible, even under the stronger
assumption that an = Θ(nα) for some α > 0 as n→ ∞: there is a sequence of
step sizes (an)n≥1 where an = Θ(n1/2) and the associated Rademacher random
walk is weakly recurrent.

Theorem 2. There exists a sequence (an)n≥1 of integers such that an = Θ(n1/2)
as n→ ∞ and the associated Rademacher random walk is weakly recurrent.

We remark that from our proof of Theorem 1 we can already relax the
condition that an = nα+o(1) slightly to allow nα−δ ≤ an ≤ nα+δ for some
sufficiently small δ = δ(α). However, we still need both upper and lower bounds
on an. Perhaps surprisingly, the upper bound is necessary: the sequence (an)
can grow arbitrarily fast and still yield a recurrent Rademacher walk.

Theorem 3. Let f : N → R be any non-decreasing function. There is an integer
sequence (an)n≥1 such that an ≥ f(n) for all n and the associated Rademacher
random walk is recurrent.

Our proof of Theorem 3 constructs the sequence in blocks of increasing length
such that within each block the terms alternate between two consecutive integers.
Allowing non-integer step sizes, we can get topological recurrence from a strictly
increasing sequence that grows as fast as we like:

Theorem 4. Let f : N → R be any non-decreasing function. There is a strictly
increasing real sequence (an)n≥1 such that an ≥ f(n) for all n and the associated
Rademacher random walk is topologically recurrent.

Recall that Bhattacharya and Volkov showed that if (an) consists of distinct
integers then the Rademacher random walk is transient. In particular, the walk
associated to any strictly increasing integer sequence (an) is transient, and there
cannot be a single sequence that demonstrates both Theorem 3 and Theorem 4.

These results leave open the possibility that there could be a powerful
sufficient condition for transience of the Rademacher random walk, in terms
of the asymptotic behaviour of the sequence (an), when we restrict to non-
decreasing integer sequences. The asymptotically fastest-growing non-decreasing
integer sequences that we know to yield weakly recurrent Rademacher random
walks are the examples an = ⌊c log n⌋ from [3]. On the other hand, increasing
the growth rate slightly, but still using all the non-negative integers, we can
obtain a transient Rademacher random walk.
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Theorem 5. Let (an)n≥1 be a non-decreasing sequence of integers, and let Li be
the number of times i appears in the sequence. Suppose that, for all large enough
n, ∑

i≤n

gcd(i,n)=1

Li ≥ 2n2 (1)

and
n−1∑
i=1

i2Li ≥ 4n2 log3(n) · Ln. (2)

Then the Rademacher random walk X associated with (an)n≥1 is transient.

Corollary 6. For any α > 1, the Rademacher random walk with step sizes
an = ⌊logα(n)⌋ is transient

The (Lévy) concentration function Q of a real valued random variable A is
defined by1

Qr(A) = sup
x∈R

P(x < A ≤ x+ r).

Any upper bound for a value of the concentration function is called an anti-
concentration bound, while a lower bound is called a concentration bound. Some
known anti-concentration bounds for sums of independent random variables are
discussed in Section 2.

To prove Theorem 1 we show, using the theorem below, that the position of
the Rademacher random walk at each time n is sufficiently anti-concentrated,
and then apply the Borel–Cantelli lemma. We remark that, as alluded to earlier,
the following theorem allows us to slightly relax the condition that an = nα+o(1).

Theorem 7. Let (an)n≥0 be a sequence and suppose that there are constants
c, C, α > 0 and δ ≥ 0 such that, for all large enough n,

cnα ≤ an ≤ Cnα+δ.

Then, for any γ > 0, we have the anti-concentration bound

Q1

(
n∑

i=1

ϵiai

)
= O

(
n−( 1

2+αf(α,δ)−γ)
)
,

where

f(α, δ) =

{
α2

(α+δ)(α+2δ+2
√
δ2+αδ)

if δ ≤
√
α2+1−α

2 ,

α2

(α+δ)(1+2δ)(α+1/2+δ) if δ ≥
√
α2+1−α

2 .

From this it is easy to deduce Theorem 1.
1We warn the reader that authors disagree about the strictness of the inequalities in the

definition of the concentration function, so care is needed in interpreting anti-concentration
inequalities in the literature. We have made the same choice as in [10], because it gives Q1(A)
the meaning that we want in the case of an integer-valued random variable A.

4



Proof of Theorem 1 from Theorem 7. Fix λ > 0 which is small enough that
1/2 + α− λ > 1. For any δ > 0, we have

nα−δ ≤ an ≤ nα+δ

for all sufficiently large n. As f(α, δ) → 1 as δ → 0, there is some δ > 0
such that this condition on an is enough to get the anti-concentration bound
Q1(Xn) = O(n−(1/2+α−λ)).

For any fixed C, the probability that |Xn| ≤ C is O(n−(1/2+α−λ)) and this
is summable by our choice of λ. Hence, by the Borel–Cantelli lemma, the
probability that |Xn| ≤ C infinitely often is 0, and the walk is transient.

We remark that by substituting δ = 0 into Theorem 7, we get the bound
O(n−(α+1/2−γ)), which is easily seen to be tight up to the γ term by considering
the sequence an = nα. Also of interest is what happens as δ → ∞. In this
case, the anti-concentration gets close to O(n−1/2), and it is also straightforward
to show that there must be points where this is the correct behaviour. More
generally, we have the following easy lower bounds which complement Theorem 7.

Proposition 8. Fix α > 0. Then

Q1

(
n∑

i=1

ϵin
α

)
= Ω(n−(1/2+α)).

Moreover, for any δ ≥ 1/2, there exists a sequence (an)n≥1 of step sizes and a
sequence of times (ni)i≥1 such that

Q1

(
ni∑
i=1

ϵiai

)
≥ n

−(1/2+ α
2δ+o(1))

i .

Let us now turn to the second part of Problem 1: are there conditions on
the growth rate of (an) that guarantee that the associated Rademacher random
walk is weakly recurrent?

There is no unbounded non-decreasing function f for which the condition
an ≤ f(n) suffices to imply weak recurrence, as the following example shows.
Let f : N → [1,∞) be unbounded and non-decreasing. Take an = 2bn where
bn = ⌊log2 f(n)⌋ for all n, so that an ≤ f(n). Once bn ≥ k, the congruence class
of Xn modulo 2k becomes constant and it is not difficult to deduce that the
random walk is transient. In light of this example, one might ask for the walk
to be “irreducible”. We say an integer-valued random walk is irreducible if, for
any a, b ∈ Z and any n ∈ N such that P(Xn = a) > 0, there is some m > n such
that P(Xm = b | Xn = a) > 0. Clearly, the Rademacher random walk that we
just constructed is not irreducible. However, imposing irreducibility does not
change the situation, as the following lemma shows.

Lemma 9. Let f : N → [1,∞) be any function such that f(n) → ∞ as n→ ∞.
Then there exists a non-decreasing sequence (an)n≥1 of integer step sizes for
which an ≤ f(n) for all n and the associated Rademacher random walk is both
irreducible and transient.
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To address the case where (an)n≥1 is bounded, we prove the following lemma,
which extends a theorem of Bhattacharya and Volkov [3, Theorem 2].

Lemma 10. Let (an)n≥1 be a sequence of real numbers such that
∑∞

n=1 a
2
n = ∞,

and let X = (Xn)n≥0 be the associated Rademacher random walk. Then, almost
surely, X is unbounded below and unbounded above, and in particular, X changes
sign infinitely often.

In [3] it was shown that X changes sign infinitely often almost surely under
the stronger assumption that (an) is a non-decreasing sequence of positive reals.
Note that the condition

∑∞
n=1 a

2
n = ∞ is necessary, since otherwise Xn almost

surely converges to a random limit. When X converges, it changes sign only
finitely many times.

Lemma 10 implies that if the sequence (an) is bounded, say an ≤ C for all n,
and

∑∞
n=1 a

2
n = ∞, then P(|Xn| < C i.o.) = 1, so the Rademacher random walk

is weakly recurrent. Recall that if
∑∞

n=1 a
2
n converges, then the Rademacher

random walk converges to a random limit and the walk is also weakly recurrent.
Putting these two cases together gives the following corollary.

Corollary 11. If the sequence (an)n≥1 is bounded, the associated Rademacher
random walk is weakly recurrent.

We also have another immediate corollary of Lemma 10:

Corollary 12. If the sequence (an)n≥1 satisfies
∑∞

n=1 a
2
n = ∞ and an → 0 as

n→ ∞, then the associated Rademacher random walk is topologically recurrent.

This is a special case of the well-known fact (which it easily implies by
conditioning on the step sizes) that any symmetric random walk with bounded
but not necessarily identically distributed steps is weakly recurrent.

Although we know that there is a weakly recurrent Rademacher walk with
an = Θ(n1/2), we have not determined the behaviour in the natural case where
an = nα for any α in the range 0 < α ≤ 1/2. We can, however, say something
about the possible behaviours in this range by applying the following theorem.

Theorem 13. Suppose the sequence (an) is unbounded and an − an−1 → 0.
Then the associated Rademacher random walk is either transient or topologically
recurrent.

Theorem 1 shows that the transient case may occur, and the recurrence result
of [3] concerning the sequence an = log n shows that the topologically recurrent
case may occur.

The rest of the paper is organised as follows. In §2 we discuss a number of
known anti-concentration results and prove a simple but useful lemma about
combining anti-concentration at different scales. In §3 we prove some anti-
concentration estimates for Rademacher sums, including a (mod m) analogue of
the Erdős–Littlewood–Offord inequality (Theorem 15). In §4 we prove the anti-
concentration bound Theorem 7, from which we have already deduced Theorem 1,
and the concentration bound Proposition 8. In §5 we prove Theorem 2 by
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exhibiting an explicit sequence (an)n≥1 such that an = Θ(n1/2) as n→ ∞ and
the associated Rademacher walk is weakly recurrent. In §6 we prove Lemma 9
and Lemma 10. In §7 we prove Theorem 5 and deduce Corollary 6. In §8 we
prove Theorem 13. Finally, in §9 we prove Theorem 3 and Theorem 4.

2 Anti-concentration inequalities

In this section we recall several well-known anti-concentration inequalities that
will be used later on, and we give a simple lemma which allows us to combine
the anti-concentration of two random variables at different scales.

Recall that the concentration function Q of a real-valued random variable A
is given by

Qr(A) = sup
x∈R

P(x < A ≤ x+ r).

Note that for any integer m ≥ 1, the union bound gives

Qmr(A) ≤ mQr(A).

We start with the general case of a one-dimensional Rademacher random
walk X whose step sizes are general real numbers, not necessarily integers and
not necessarily separated.

Lemma 14 (Erdős–Littlewood–Offord inequality). If the step sizes (an)n≥1 of
a Rademacher walk X = (Xn)n≥1 are all greater than or equal to a constant
c > 0, then

Q2c(Xn) ≤
(

n

⌊n/2⌋

)
2−n ∼

√
2

πn
as n→ ∞. (3)

Erdős’ simple proof of this in [7] was to note that for any x ∈ R, the set of
assignments of (ϵ1, . . . , ϵn) for which

∑n
i=1 ϵiai ∈ (x, x+ c] form an anti-chain

in the hypercube {−1, 1}n with the coordinatewise partial order, and then to
apply Sperner’s theorem [20] about the size of the largest anti-chain. In §3 we
will prove the following (mod m) analogue of Lemma 14 for the case of integer
step sizes, which we were unable to find in the literature.

Theorem 15. Let m be a positive integer and let b1, . . . , bn be positive integers
coprime to m. Let ϵ1, . . . , ϵn be independent Rademacher random variables, and
let Xn =

∑n
i=1 ϵibi. Then

max
r∈Z/mZ

P(Xn ≡ r (mod m)) ≤


1
m +

√
2
πn if m is odd,

2
m +

√
2
πn if m is even.

The Erdős–Littlewood–Offord inequality is a special case of a more gen-
eral result, known as the Kolmogorov–Rogozin inequality, which gives anti-
concentration bounds on a sum of independent random variables using bounds
on the anti-concentration of the summands. The first results of this form were
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shown by Doeblin and Levy, before being improved by Kolmogorov, then Ro-
gozin and then Kesten. The sharpest possible bounds were obtained recently by
Juškevičius in [10], which summarizes the history of the problem.

For many applications, the following form of the Kolmogorov–Rogozin in-
equality suffices.

Theorem 16 (Rogozin, [17]). There is a C > 0 such that for any independent
random variables X1, . . . , Xn and real numbers 0 < λ1, . . . , λn ≤ 2r,

Qr(X1 + · · ·+Xn) ≤ C · r ·

(
n∑

i=1

λ2i (1−Qλi
(Xi))

)−1/2

.

Although we will not use it directly, we mention for completeness a key tool
in proving many anti-concentration inequalities:

Lemma 17 (Esséen’s inequality [8]). If X is a real-valued random variable with
characteristic function ψ, then Qr(X) ≤ t

∫ 2π/r

−2π/r
|ψ(λ)| dλ.

Let us now consider the case where the step sizes are separated. Let Y =
(Yn)n≥0 be the Rademacher random walk with step sizes 1, 2, 3, etc. It is known
that for any Rademacher random walk (Xn)n≥0 with distinct positive integer
step-sizes, we have the anti-concentration bound

Q1(Xn) = sup
x∈Z

P(Xn = x) ≤ P(Yn = 0) ∼
√
6/π

n3/2
as n→ ∞. (4)

The inequality in (4) was proven by Richard Stanley [21], using enumerative
algebraic geometry and answering a question of Erdős and Moser. Another
wonderful proof using Lie algebras was given shortly afterwards by Proctor [16].
The asymptotic in (4) is due to Sullivan [23]. Before Stanley’s result, Sárközi and
Szemerédi [18] had shown that supx∈Z P(Xn = x) = O(n−3/2). From their bound
it already follows by a simple Borel–Cantelli argument that any Rademacher
random walk whose step sizes are distinct positive integers must be transient
(see [3, Theorem 4]).

Halász extended the result of Sárközi and Szemerédi as follows.

Lemma 18 (Halász [9, Theorem 2]). Consider n vectors a1, . . . , an ∈ Rd such
that for any unit vector e, we have |⟨e, ai⟩| ≥ 1 for at least δn values of i, and
also ∥ai − aj∥ ≥ 1 whenever i ̸= j. Then

P

(
n∑

i=1

ϵiai ∈ B(x, 1)

)
≤ c(δ, d)n−1−d/2, (5)

where c(δ, d) is a constant that does not depend on n.

In the case d = 1, the inner product condition involving δ may be dropped
since it is implied by the separation condition for large enough n. We remark
that (5) already gives sufficient anti-concentration to show that the Rademacher
random walk with step sizes an = nα is transient for any α > 2/3. Indeed, if
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α ≥ 1, then |ai − aj | ≥ 1 for all i ̸= j, and we can immediately apply Lemma 18
in the case d = 1 to get an anti-concentration bound of O(n−3/2) (and then we
can finish by applying the Borel–Cantelli lemma). On the other hand, if α < 1,
then an+1 − an < 1 and there is some ai in each interval [k, k + 1). Hence, we
can find a subsequence ai1 , ai2 , . . . of length Θ(nα) such that aij ∈ [2j, 2j + 1),
and the theorem gives an anti-concentration bound of O(n−3α/2), which suffices
to finish using Borel–Cantelli when α > 2/3.

All of the bounds above deal with step sizes which are of a somewhat
similar scale. If the step sizes grow exponentially with base at least 2, then
Q1(Xn) = 1/2n and there is much better anti-concentration than given by any
of the results above. While we will not be dealing with scales quite as different
as this, combining anti-concentration at different scales and (nearly) multiplying
the anti-concentration bounds of each is the key to our proof. For this we use
the following lemma.

Lemma 19 (Combining anti-concentration bounds at different scales).
Let 0 < r < s and let A and B be independent real-valued random variables.
Then

Qr(A+B) ≤ P(|A| ≥ s) + 3Qr(A)Qs(B).

Hence,
Qr(A+B) ≤ (1−Q2s(A)) + 3Qr(A)Qs(B).

Proof. For any x ∈ R we have

P(x < A+B ≤ x+ r) ≤ P(|A| ≥ s) + P(|A| ≤ s and x < A+B ≤ x+ r)

≤ P(|A| ≥ s) + P(x− s < B ≤ x+ r + s) · sup
b∈R

P(x− b < A ≤ x− b+ r)

≤ P(|A| ≥ s) + 3Qs(B)Qr(A).

Since we may replace A by A+ c for any constant c without changing Qr(A) or
Qr(A+B), the final statement follows.

3 Modular anti-concentration of Rademacher sums

In the course of several of our proofs, we will need to control the probability
that a sum of Rademacher random variables takes a particular value, or lies in
a particular congruence class modulo some positive integer. In this section we
establish some useful results of these kinds.

For a real random variable X, the characteristic function of X is the function
ψX : R → C given by ψX(t) = E(eitX). We say that a real random variable X
is monotone if |ψX(t)| is decreasing on [0, π].

Theorem 20 ([1, Theorem 1.1]). Let X1, . . . , Xk be independent integer-valued
random variables with E(Xi) = µi and Var(Xi) = σ2

i < ∞. Suppose that their
sum X = X1 + · · ·Xk is a monotone random variable with mean µ and variance
σ2. Then, for every t for which µ+ tσ is an integer, we have∣∣∣∣P(X = µ+ tσ)− 1√

2πσ2
e−t2/2

∣∣∣∣ ≤ c

(∑k
i=1 E(|Xi − µi|3)

σ3

)2

,
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where c is a universal constant.

Note that the sum of independent monotone random variables is monotone
and that Bernoulli(1/2) random variables are monotone. Hence, by applying the
above theorem to a suitably shifted and rescaled sum, we obtain the following
local limit theorem for sums of Rademacher random variables.

Corollary 21. Let X be the sum of n Rademacher random variables. Then, for
any x ≡ n mod 2, we have∣∣∣∣∣P(X = x)− 1√

πn/2
e−

x2

2n

∣∣∣∣∣ ≤ c

n
,

where c is an absolute constant.

In the remainder of this section we establish Theorem 15, which we restate
here.

Theorem 15. Let m be a positive integer and let b1, . . . , bn be positive integers
coprime to m. Let ϵ1, . . . , ϵn be independent Rademacher random variables, and
let Xn =

∑n
i=1 ϵibi. Then

max
r∈Z/mZ

P(Xn ≡ r (mod m)) ≤


1
m +

√
2
πn if m is odd,

2
m +

√
2
πn if m is even.

Before giving the proof, let us make a few observations about this result.

Fixing arbitrary positive integers b1, . . . , bn and letting m → ∞ along the
primes gives an alternative proof of the integer case of the Erdős–Littlewood–
Offord inequality, Lemma 14.

On the other hand, taking each bi = 1 in gives a simpler modular anti-
concentration result that is still useful.

Corollary 22. Let m ≥ 2 be an integer and let Xn =
∑n

i=1 ϵi be the sum of n
independent Rademacher random variables. For every ε > 0, if n ≥ εm2, we
have

max
0≤r<m

P(X ≡ r (mod m)) < c(ε)/m,

where c(ε) = 1 +
√

2
πε .

Remark 23. For the case where n ≤ m2 and the obvious parity condition is
satisfied, a complementary lower bound for P(X ≡ r (mod m)), also of order
1/m, may be found in [3, Corollary 3.2].

If p is an odd prime, then a p-adic formal analogue of the Erdős–Littlewood–
Offord inequality follows from Theorem 15, as follows. If b1, . . . , bn ∈ Qp all
satisfy ∥bi∥p ≥ c, then for any z ∈ Qp we have

P(Xn ∈ B(z, c)) ≤ 1

p
+

√
2

πn
,
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where B(z, c) here means the open ball in Qp of p-adic radius c about z.

In the proof of Theorem 15, we will need the following easy consequence of
the rearrangement inequality.

Lemma 24. Let n,m ≥ 1 and let y1, . . . , ym be given positive numbers. Consider
the set A of n by m matrices in which the elements of each row are some
permutation of (y1, . . . , ym). Then

max
A∈A

m∑
j=1

m∏
i=1

Aij =

m∑
j=1

ynj .

Proof. The set A is finite, so there exists a matrix A ∈ A which maximizes∑m
j=1

∏m
i=1Aij . For this A, the terms in each row must be sorted in the same

as order as the products over the columns after that row is deleted, by the
rearrangement inequality. Hence, they are sorted in the same way as the overall
column products, which means that they are all sorted in the same way.

We now turn to the proof of Theorem 15.

Proof of Theorem 15. For each x ∈ Z/mZ, let δx : Z/mZ → C be the indicator
function of x, and for each λ ∈ Z/mZ, let eλ : Z/mZ → C be the function
eλ(x) = exp(2πiλx/m)/

√
m. Note that the functions eλ form an orthonormal

basis of ℓ2(Z/mZ). We have

δ0 =
∑

λ∈Z/mZ

1√
m
eλ.

A calculation shows that the effect on eλ of convolution with 1
2 (δb + δ−b) is to

multiply it by cos(2πbλ/m). Hence, the probability mass function of Xn is given
by

P(Xn ≡ r (mod m)) =
∑

λ∈Z/mZ

1√
m

n∏
i=1

cos(2πbiλ/m)eλ(r)

Since |eλ(r)| = 1√
m

, the triangle inequality gives that

P(Xn ≡ r (mod m)) ≤ 1

m

∑
λ∈Z/mZ

n∏
i=1

| cos(2πbiλ/m)|. (6)

The multi-set of values (cos(2πbλ/m) : λ ∈ Z/mZ) is the same for every integer b
coprime to m. Therefore, by Lemma 24, the right-hand side of (6) is maximized
when all bi are congruent (mod m) to any constant value b that is coprime to m,
for example b = 1. In this case it takes the value 1

m

∑
λ∈Z/mZ | cos(2πλ/m)|n. In

the case where m is even,

1

m

∑
λ∈Z/mZ

| cos(2πλ/m)|n =
1

m

2 + 4

⌊m/4⌋∑
ℓ=1

cos(2πℓ/m)n

.

11



In the case where m is odd,

1

m

∑
λ∈Z/mZ

| cos(2πλ/m)|n =
1

m

1 + 2

⌊m/2⌋∑
ℓ=1

cos(πℓ/m)n

.
Using the inequality cosx ≤ e−x2/2, which holds for x ∈ [−π/2, π/2], for even m
we obtain

1

m

∑
λ∈Z/mZ

| cos(2πλ/m)|n ≤ 1

m

(
2 + 4

∞∑
ℓ=1

e−2π2ℓ2n/m2

)

≤ 1

m

(
2 + 4

∫ ∞

0

e−(4π2n/m2)·x2/2 dx
)

=
2

m
+

√
2

πn
,

and similarly for odd m we obtain

1

m

∑
λ∈Z/mZ

| cos(2πλ/m)|n ≤ 1

m

(
1 + 2

∞∑
ℓ=1

e−π2ℓ2n/(2m2)

)

≤ 1

m
+

√
2

πn
.

4 Anti-concentration of Rademacher random walks

The main aims of this section are to prove the anti-concentration bound Theo-
rem 7 and the concentration bound Proposition 8.

Our main tool in proving Theorem 7 is Lemma 19, for which we need
both anti-concentration and concentration bounds on A. For the concentration
bound, we will use the following well-known bound (see e.g. [14]), which is a
straightforward application of Hoeffding’s inequality.

Lemma 25.

P

(
n∑

i=1

aiϵi ≥ t∥a∥2

)
≤ e−t2/2.

The result in Theorem 7 only requires the bounds on an to hold for large
enough n, and there is no control over the initial terms. The following result
shows that modifying a prefix of length m of the sequence (an) can only change
the concentration by a factor of at most 2m+1, and in particular, this will allow
us to assume that the bounds on an hold for all n when proving Theorem 7.

Lemma 26. Let (an)n≥1 be a sequence and let (a′n)n≥1 be a sequence which
differs from (an) only in the first m terms. Let (Xn)n≥0 and (X ′

n)n≥0 be the
corresponding Rademacher random walks. Then, for every n,

2−(m+1)Qr(X
′
n) ≤ Qr(Xn) ≤ 2m+1Qr(X

′
n).

12



Proof. Suppose that A and B are discrete independent random variables. We
claim that

Qr(A)Qr(B)

2
≤ Qr(A+B) ≤ Qr(A). (7)

For the upper bound we have

P(x < A+B ≤ x+ r) =
∑
b

P(x− b < A ≤ x− b+ r)P(B = b)

≤ sup
b

P(x− b < A ≤ x− b+ r) ·
∑
b

P(B = b)

≤ sup
x

P(x < A ≤ x+ r)

= Qr(A),

which implies Qr(A+B) ≤ Qr(A).

For the lower bound, let ε > 0 be given and choose x, y such that

P(x < A ≤ x+ r) ≥ (1− ε)Qr(A),

P(y < B ≤ y + r) ≥ (1− ε)Qr(B).

Then the events

{A+B ∈ (x+ y, x+ y + r]} and {A+B ∈ (x+ y + r, x+ y + 2r]}

are disjoint and cover the event

{x < A ≤ x+ r, y < B ≤ y + r}.

The latter event has probability at least (1− ε)2Qr(A)Qr(B) and so one of the
first two events must have probability at least (1− ε)2Qr(A)Qr(B)/2. Letting
ε→ 0 we obtain the lower bound in (7).

Now let A =
∑m

i=1 ϵiai and B =
∑n

i=m+1 ϵiai. Define A′ by A′ =
∑m

i=1 ϵia
′
i,

so that Xn = A+ B and X ′
n = A′ + B. Note that Q1(A), Q1(A

′) ≥ 2−m. We
have

Qr(A+B) ≤ Qr(B) ≤ 2m+1Qr(A
′)Qr(B)

2
≤ 2m+1Qr(A

′ +B)

and

Qr(A+B) ≥ Qr(A)Qr(B)

2
≥ Qr(A)Qr(A

′ +B)

2
≥ 2−(m+1)Qr(A

′ +B).

We are now armed with all the tools we need to prove Theorem 7, which we
restate here for convenience.

Theorem 7. Let (an)n≥0 be a sequence and suppose that there are constants
c, C, α > 0 and δ ≥ 0 such that, for all large enough n,

cnα ≤ an ≤ Cnα+δ.

13



Then, for any γ > 0, we have the anti-concentration bound

Q1

(
n∑

i=1

ϵiai

)
= O

(
n−( 1

2+αf(α,δ)−γ)
)
,

where

f(α, δ) =

{
α2

(α+δ)(α+2δ+2
√
δ2+αδ)

if δ ≤
√
α2+1−α

2 ,

α2

(α+δ)(1+2δ)(α+1/2+δ) if δ ≥
√
α2+1−α

2 .

Before we give the full details, let us briefly sketch the proof in the case where
an = nα. The key idea is to group some of the terms in the sum

∑n
i=1 ϵiai into

subsets which are at different scales. In the interval [2k, 2k+α) we expect around
2k/α of the an, and let us set A to be the Rademacher sum of any such terms.
Using the Erdős–Littlewood–Offord inequality, the anti-concentration of A at
the scale 2k+1 is around 2−k/(2α). On the other hand, if k is much larger than
α, we expect the magnitude of A to be around 2k · 2k/(2α), and there should be
concentration around this scale. Hence, if we set k′ = (1 + 1/(2α) + ε)k and let
A′ be the Rademacher sum of the terms in the interval [2k

′
, 2k

′+α), then the
sum A′ is anti-concentrated at the scale 2k

′
while the sum Ak is concentrated at

the 2k
′
. This means we can use Lemma 19 to combine the anti-concentration.

This can clearly be repeated and we will take a sequence k1, k2, . . . where
ki = (1 + 1/(2α) + ε)i and try to combine the anti-concentration of the random
variables A1, A2, . . . , where we think of Ai as the sum of the terms ϵiai for which
ai ∈ [2ki , 2ki+α). In actuality, we will have to widen the interval in which we
take the an and also limit the number that we take from each interval.

To get the required anti-concentration for all large enough n, the anti-
concentration from sums of the form A1 + · · ·+Am is not enough. Indeed, while
we get the required anti-concentration of n−(α+1/2−γ) when n is not much bigger
than 2km/α + 1, the anti-concentration drops to around n−α by the time n is
close to 2km+1/α. In order to apply Lemma 19 we need A1 + · · ·+ Ai−1 to be
concentrated at the scale of Ai for each i. We can achieve this by ensuring that
none of the terms in Aj are too big for each j < m, but observe that we don’t
need Am to be concentrated as it is the last summand. To get the required
concentration for all n between 2km/α+1 and 2km+1/α+1, we will replace Am by
the sum of the terms ϵiai for which ai ∈ [2km ,∞) and i ≤ n, which we can do
as we do not need concentration for the last summand.

We make this argument rigorous below. We also weaken the conditions on
an. This means we must make our intervals wider to be able to guarantee that
we can find enough an which fall in the intervals. This in turn means that the
intervals must be further apart and we pay a penalty in the anti-concentration
that we obtain. However, this is unavoidable; there must be some penalty to
pay (for large δ) as shown by Proposition 8.

Proof. Pick a constant λ such that δ/α < λ. We will later take λ to be arbitrarily
close to δ/α.

By Lemma 26, we can modify the first m terms in the sequence and only
change the anti-concentration by at worst a factor of 2m+1. We will therefore

14



assume that
cnα ≤ an ≤ Cnα+δ

holds for all n ≥ 1 and not just n large enough. Using our assumptions on an, if
n is such that

(2k/c)1/α ≤ n ≤ (2(1+λ)k/C)1/(α+δ)

then 2k ≤ an ≤ 2(1+λ)k. Hence, the number of n for which an is in the interval
[2k, 2(1+λ)k] is at least(

2(1+λ)k

C

) 1
α+δ

− 1−
(
2k

c

)1/α

=

(
2

αλ−δ
α(α+δ)

k

C1/(α+δ)
− 1

c1/α

)
2k/α − 1.

Since we have taken αλ > δ, this certainly is at least 2k/α for large enough k.

Now fix β ≥ α and ε > λ, and define ki by

ki =

(
1 +

1

2β
+ ε

)i

.

We will later take ε arbitrarily close to λ and choose the value of β ≥ α to
optimise the anti-concentration bound. Let Ai be the random sum corresponding
to the first ⌈2ki/β⌉ of the an which lie in the interval [2ki , 2(1+λ)ki ], noting that
this is possible when ki is large by the above argument and our assumption that
β ≥ α.

We now claim that the anti-concentration of the sum of the Ai is roughly
equal to the product of their individual anti-concentrations.

Claim 27. There is M > 0 such that

Q1(A1 + · · ·+Am) ≤M · 3m · 2−
(1+1/(2β)+ε)m+1

1+2βε

for all m.

Proof. First, note that by the Erdős–Littlewood–Offord inequality (Lemma 14),
we have

Q2ki+1(Ai) ≤
√

2

π
· 2−

ki
2β

for large enough i. We will induct on m, taking s = 2km+1 and r = 1 in
Lemma 19 to get anti-concentration at different scales.

To apply Lemma 19, we first need to show that the sum A1 + · · ·+Am−1 is
concentrated at the scale s. Using Lemma 25, we have that

P(|A1 + · · ·+Am−1| ≥ s) ≤
m−1∑
i=1

P
(
|Ai| ≥

s

(m− 1)

)
≤ 2(m− 1) exp

(
− s2

4(m− 1)22(2+2λ+1/β)km−1

)
.

Substituting in s = 2km+1 = 2 · 2(1+
1
2β+ε)km−1 , we have

P
(
|A1 + · · ·+Am−1| ≥ 2km+1

)
≤ 2(m− 1) exp

(
−22(ε−λ)km−1

(m− 1)2

)
.
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Pick m0 such that for all m ≥ m0, the quantity given above is at most

2−
(1+1/(2β)+ε)m+1

1+2βε , and choose M ≥ 1 such that

Q1(A1 + · · ·+Am) ≤M · 3m · 2−
(1+1/(2β)+ε)m+1

1+2βε

holds for all m ≤ m0.

Now suppose that the claimed bound holds for m− 1 ≥ m0. Then, using the
above, we have

Q1(A1 + · · ·+Am) ≤ 2−
(1+1/(2β)+ε)m+1

1+2βε + 3 ·M3m−12−
(1+1/(2β)+ε)m

1+2βε ·
√

2

π
2−

km
2β

= 2−
(1+1/(2β)+ε)m+1

1+2βε +M · 3m ·
√

2

π
· 2−

(1+1/(2β)+ε)m+1

1+2βε

=

(
1 +M · 3m ·

√
2

π

)
2−

(1+1/(2β)+ε)m+1

1+2βε

≤M · 3m · 2−
(1+1/(2β)+ε)m+1

1+2βε .

Pick N and suppose that 2(2(1+λ)km/c)1/α ≤ N < 2(2(1+λ)km+1/c)1/α. Let
us assume that N is large enough that m ≥ m0, where m0 is defined as in the
claim above. Note that an > 2(1+λ)km for all n ≥ N so, in particular, the sum
XN contains all of the terms in the sum A1+ · · ·+Am. Let B be the Rademacher
sum of the an for which n ≤ N and an ≥ 2km , so that the terms in this sum
are a superset of the terms in Am. We will bound the anti-concentration of
A1 + · · ·+Am−1 +B using Lemma 19.

First, note that B contains at least

N −
(
2km

c

)1/α

≥ N

2

terms, all of which are at least 2km . By the Erdős–Littlewood–Offord inequality,
Lemma 14, we have

Q2km+1(B) ≤
√

4

πN
.

We again have the concentration bound

P
(
|A1 + · · ·+Am−1| ≥ 2km+1

)
≤ 2(m− 1) exp

(
−22(ε−λ)km−1

(m− 1)2

)
,

but this time we bound it directly. Since m = Θ(log log(N)) and this term is

2−22
Θ(m)

, it decays quicker than any polynomial. The term 3m is also at most
polylogarithmic in N , so is certainly in O(Nγ/2) for any fixed γ > 0.

We also have that

2−
(1+1/(2β)+ε)m

1+2βε = 2−
(1+λ)(1+1/(2β)+ε)m+1

α · α
(1+2βε)(1+λ)(1+1/(2β)+ε)

≤
(
c1/αN

2

)− α
(1+2βε)(1+λ)(1+1/(2β)+ε)

.
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Using Lemma 19, we find that Q1(A1 + · · ·+Am−1 +B) is bounded by

M ·O(Nγ/2) ·
(
c1/αN

2

)− α
(1+2βε)(1+λ)(1+1/(2β)+ε)

·
√

4

πN
+O

(
2−22

Θ(log log(N))
)

which is
O
(
N−1/2− α

(1+2βε)(1+λ)(1+1/(2β)+ε)
+γ/2

)
.

It remains to choose the values λ, ε and β, and we recall that we require
αλ > δ, ε > λ and β ≥ α. If δ <

√
α2+1−α

2 , then we take β = 1/(2
√
λ2 + λ), else

we take β = α. We then take λ sufficiently close to δ/α and ε sufficiently close
to λ so that β ≥ α and

α

(1 + 2βε)(1 + λ)(1 + 1/(2β) + ε)
≥ αf(α, δ)− γ

2
.

From this it is easy to deduce the following corollary.

Corollary 28. Let (an)n≥1 be a sequence such that an = nα+o(1) for some
constant α > 0, and let (Xn)n≥0 be the associated Rademacher random walk.
Then Q1(Xn) = O(n−(α+1/2+o(1))).

We end this section by proving Proposition 8, which we restate here for
convenience.

Proposition 8. Fix α > 0. Then

Q1

(
n∑

i=1

ϵin
α

)
= Ω(n−(1/2+α)).

Moreover, for any δ ≥ 1/2, there exists a sequence (an)n≥1 of step sizes and a
sequence of times (ni)i≥1 such that

Q1

(
ni∑
i=1

ϵiai

)
≥ n

−(1/2+ α
2δ+o(1))

i .

Proof. First, let us consider the sequence (an)n≥1 where an = nα, and let
(Xn)n≥1 be the associated Rademacher random walk. Chebyshev’s inequality
gives that

P
(
|Xn| < 2

√
Var(Xn)

)
≥ 3

4
.

The interval (−2
√
Var(Xn), 2

√
Var(Xn)) may be covered using no more than

⌈4
√
Var(Xn)⌉ intervals of the form [x, x+ 1) so there exists x ∈ R such that

P(Xn ∈ [x, x+ 1)) ≥ 3

16⌈
√
Var(Xn)⌉

.
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The bound now follows by substituting in

Var(Xn) =

n∑
k=1

(kα)2 =
n2α+1

2α+ 1
+O(n2α).

Now set r = δ/α and consider the sequence where an = 2(1+r)k for 2
(1+r)k−1

α ≤
n < 2

(1+r)k

α . Note that we have nα ≤ an ≤ nα+δ.

Let Ak be the Rademacher sum of the an which are equal to 2(1+r)k . The
most likely value for Ak has probability(

N

⌊N/2⌋

)
2−N ≥

√
1

πN

where N ≥ 2 is the number of terms equal to 2(1+r)k . We have that N ≤ 2
(1+r)k

α ,
so the most likely value for Ak has probability at least 2−

(1+r)k

2α /
√
π. Hence, the

most likely value for A1 + · · ·+Ak has probability at least

2−
((1+r)k−1)(r+1)

2rα

πk/2
≥ 2−

(1+r)k+1

2rα

πk/2
.

Hence, if we take nk = ⌈2
(1+r)k

α ⌉ − 1 to the last step with step size 2(1+r)k , then
the most likely value has probability at least n−(1/2+1/(2r))/πk/2, as required.

5 A recurrent example with an = Θ(n1/2)

Consider the sequence

(an)n≥1 = (3, 1, 5, 3, 5, 3, 5, 3, 5, 3, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, . . . )

which is made up of consecutive blocks, where the kth block has length 4k/2 and
the steps in the kth block alternate between 2k + 1 and 2k − 1, starting with
2k + 1. Denote the index of the beginning of the (k)th block by nk. That is,

n1 = 1, n2 = 3, n3 = 11, . . . , nk = 1 +

k−1∑
i=1

4i/2 = (4k + 2)/6.

It is not hard to see that
√
n/2 ≤ an ≤ 3

√
n for all n, and so an = Θ(

√
n). We

will prove that the Rademacher random walk associated with this sequence is
weakly recurrent (and hence prove Theorem 2). In fact we will show that the
walk visits every even integer infinitely often.

Let X = (Xn)n≥0 be the associated Rademacher random walk. Note that all
the steps of X are odd integers, so to study the return times of X to 0 we may
focus our attention on the random walk Y defined by Yn = X2n, which only visits
even integers. We will use hitting probability estimates for the simple symmetric
random walk on Z2 and the Kochen–Stone theorem to show that almost surely
Y visits every even integer infinitely often. The Kochen–Stone theorem has been
used before to prove recurrence of random walks; see e.g. [2, 15].
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Theorem (Kochen and Stone [12, Theorem 1]). Let Z1, Z2, . . . be a sequence
of random variables, each of which has nonzero mean and positive finite second
moment. Suppose in addition that lim supn→∞(E(Zn))

2/E(Z2
n) > 0. Then

(i) P(lim infn→∞ Zn/E(Zn) ≤ 1) > 0,

(ii) P(lim supn→∞ Zn/E(Zn) ≥ 1) > 0, and

(iii) P(lim supn→∞ Zn/E(Zn) > 0) ≥ lim supn→∞(E(Zn))
2/E(Z2

n).

Let Ek be the event that X visits 0 during the (2k)th block. We will show
the following:

Lemma 29. For Ek as defined above, we have P(Ek) = Ω(1/k) as k → ∞, so
that

∑∞
k=1 P(Ek) = ∞. Moreover, there is a finite constant C such that for all

j < k we have
P(Ek | Ej) ≤ CP(Ek).

Before proving Lemma 29, let us explain how it implies our claim about the
recurrence of the walk Y . Let Zn =

∑n
k=1 1(Ek). From the first statement in

Lemma 29 we deduce that E(Zn) = Ω(log n), and in particular E(Zn) → ∞ as
n→ ∞. From the second statement in Lemma 29 we obtain for all j ̸= k that

P(Ej ∩ Ek) ≤ C P(Ej)P(Ek),

so

E[Z2
n] = E

( n∑
k=1

1Ek

)2


=

n∑
k=1

P(Ek) +

n∑
j=1

n∑
k=1

1{j ̸=k}P(Ej ∩ Ek)

≤ E(Zn) + C

n∑
j=1

n∑
k=1

1{j ̸=k}P(Ej)P(Ek)

≤ E(Zn) + C
( n∑
j=1

P(Ej)
)2

= E(Zn) + C(E(Zn))
2

Since E(Zn) → ∞ as n→ ∞ we obtain

(E(Zn))
2

E(Z2
n)

≥ 1

C
− o(1).

This allows us to apply part (iii) of the Kochen–Stone theorem to deduce that

P
(
lim sup
n→∞

Zn

E(Zn)
> 0

)
≥ 1

C
.

Since E(Zn) → ∞ as n→ ∞, this implies P(Ek occurs i.o.) > 0 and in particular
P(X2n = 0 i.o.) > 0. It then follows from Kolmogorov’s zero-one law that

P(∃r ∈ Z : Y visits r i.o.) = 1,
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since this is a tail event which occurs with positive probability.

From this it is easy to see that the probability that Y (and therefore X)
visits every even integer is 1. Indeed, for every time t we have

P(Yt+1 = Yt + 2 | Yt) = 1/4 = P(Yt+1 = Yt − 2 | Yt),

and hence, for all m,n ∈ 2Z,

P(Y visits m i.o. but does not visit n i.o.) = 0.

The result now follows by summing over the choices for m.

We are now ready to give a proof of Lemma 29.

Proof of Lemma 29. For any event E such that P(E) > 0 and any integrable
random variable T ≥ 0 on the same probability space such that E(T ) > 0 and
T = 0 on the complement of E, we have

P(E) =
E(T1E)

E(T | E)
=

E(T )
E(T | E)

.

Take E = Ek, the event that X visits 0 during the (2k)th block, i.e. during the
times (n2k, . . . , n2k+1 − 1), and let T = Tk, where Tk is the number of visits of
X to 0 during the (2k)th block.

We will prove the following four estimates, where c1 and c2 are positive
constants:

(i) E(Tk) = Ω(1) as k → ∞,

(ii) E(Tk | Ek) = O(k) as k → ∞,

(iii) E(Tk | Ej) < c1, for all j, k such that j < k,

(iv) E(Tk | Ej ∩ Ek) > c2k for all j, k such that j < k.

Observe that (i) and (ii) imply that

P(Ek) =
E(Tk)

E(Tk | Ek)
= Ω(1/k) as k → ∞.

On the other hand, (iii) and (iv) imply in the same way that

P(Ek | Ej) =
E(Tk | Ej)

E(Tk | Ej ∩ Ek)
<

c1
c2k

for all j, k with j < k.

It follows that there is a finite constant C such that for all j < k

P(Ek | Ej) ≤ CP(Ek).

We make the estimates (i)-(iv) by relating the portion of the walk Y during
the (2k)th block to a simple symmetric random walk on Z2. Fix k for now. Let
m0 = (n2k − 1)/2 and m1 = (n2k+1 − 1)/2. Note that

m1 −m0 =
n2k+1 − n2k

2
= 42k/2 = 24k−2.
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We define a walk (am, bm) for m0 ≤ m ≤ m1 by setting (am0
, bm0

) = (0, 0), and
then, inductively for m = m0 + 1, . . . ,m1,

(am, bm) = (am−1, bm−1) +


(1, 0) if Ym − Ym−1 = 22k+1,
(−1, 0) if Ym − Ym−1 = −22k+1,
(0, 1) if Ym − Ym−1 = 2,
(0,−1) if Ym − Ym−1 = −2.

Let L be the random arithmetic progression in Z2 defined by

L = {(a, b) ∈ Z2 : 22k+1a+ 2b+ Ym0
= 0}.

For m0 ≤ m ≤ m1 we have Ym = 0 if and only if (am, bm) ∈ L. Thus, Tk is the
number of times that (am, bm) hits L.

Proof of (i) To get a lower bound on E(Tk), we first apply Chebyshev’s
inequality to show that Ym0

is often not too large:

Var(Ym0
) = Var(Xn2k−1

) =

n2k−1∑
n=1

a2n

=

2k−1∑
n=1

4k

4
((2n + 1)2 + (2n − 1)2)

≤ 42k/12 · 2(1 + 22k)2

≤ 28k.

Hence, using that E(Ym0
) = 0, we have that

P(|Ym0
| < 21+4k) ≥ 1/4.

When |Ym0
| < 21+4k, we can express Ym0

as 22k+1α+ 2β, where |α| ≤ 22k and
|β| ≤ 22k. The expected number of visits of (am, bm) to (−α,−β) is

m1∑
m=m0+1

P((am, bm) = (−α,−β)).

We now use the well-known observation about the simple symmetric two-
dimensional random walk that (at + bt)

m1
t=m0

and (at − bt)
m1
t=m0

are independent
simple symmetric random walks on Z, started at 0 at t = m0. By Corollary 21,
whenever m−m0 > (m1 −m0)/2 = 24k−3 and m−m0 has the same parity as
α+ β, we have

P((am, bm) = (−α,−β)) = P(am + bm = −α− β)P(am − bm = −α+ β)

≥

(
1√

π(m−m0)/2
e
− (α+β)2

2(m−m0) − c

m−m0

)

·

(
1√

π(m−m0)/2
e
− (α−β)2

2(m−m0) − c

m−m0

)

≥
(

e−16

√
π24k−3

− c

24k−3

)2

= Ω(2−4k).
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Since the number of values of m to which this applies is 24k−4, we obtain the
asymptotic lower bound (i), i.e. E(Tk) = Ω(1) as k → ∞.

Proof of (ii) By conditioning on the time of the first visit to 0 during the
(2k)th block, we find that

E(Tk | Ek) ≤ E(Tk | Xn2k
= 0).

Hence, to prove (ii) it suffices to show that E(Tk | Xn2k
= 0) = O(k) as k → ∞.

The expected number of returns to (0, 0) in the first 2N steps of simple
symmetric random walk on Z2 started at (0, 0) is

N∑
i=1

2−2i

(
2i

i

)2

= Θ(log(N)).

Hence, the expected number of visits of (at, bt)m1
t=m0

to (0, 0) is Θ(log(m1−m0

2 )) =
Θ(k). We now show that the expected number of visits of (at, bt)m1

t=m0
to all the

nonzero points in the arithmetic progression L0 is O(1), where

L0 = {(a, b) ∈ Z2 : 22k+1a+ 2b = 0} = ⟨(1,−22k)⟩.

m1∑
m=m0+1

P((am, bm) = (n,−22kn))

=

m1∑
m=m0+1

P(am + bm = n(1− 22k))P(am − bm = n(1 + 22k))

≤ 24k−2 sup
m≥24kn

P(am + bm = n(1− 22k))P(am − bm = n(1 + 22k))

≤ 24k−2 sup
m≥24kn

(
1√
πm/2

e−
(n(22k−1))2

2m +
c

m

)2

≤ 24k−2

(√
2

πe(n(22k − 1))2
+

c

24kn

)2

≤ c/n2,

Summing over all n ∈ Z \ {0} gives an upper bound of cπ2/3, and so we have
proved estimate (ii).

Proof of (iii) For estimate (iii), we have

E(Tk | Ej) ≤ max
r∈2Z

E(Tk | Xn2j+1
= r)

≤
n2k+1∑
n=n2k

Q1(Xn −Xn2j+1)

≤ 42k

2
·Q1(Xn2k

−Xn2k−1
).
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Let mk be the number of pairs (2i, 2i+1) with n2k−1 ≤ 2i < n2k for which ϵ2i =
−ϵ2i+1. Then mk is a binomial random variable with 42k/4 trials and success
probability 1/2. A Chernoff bound immediately implies that the probability that
mk lies in the interval [42k/12, 42k/6] is 1− o(4−2k). Conditional on the value of
mk, the increment Xn2k

−Xn2k−1
is expressible as a sum 2A1 + 22k+1A2, where

A1 is a sum of mk Rademacher random variables, A2 is a sum of 42k/4 −mk

Rademacher random variables, and A1 and A2 are independent.

Now condition on mk, and assume that mk ∈ [42k/12, 42k/6]. Consider the
digits of A1 + 2kA2 in base 4k. The units digit is determined by A1 alone, and
by Corollary 22 there is a constant c not depending on k or on mk such that
supr P(A1 ≡ r (mod 4k)) ≤ c/4k.

Conditional on mk and A1, the next digit is determined by A2 and again
sups P(A2 ≡ s (mod 4k)) ≤ c/4k. Hence, each possible value of the last two
digits occurs with probability at most c2/42k. It follows that

Q1(Xn2k
−Xn2k−1

) ≤ c2/42k + o(4−2k).

This proves estimate (iii).

Proof of (iv) For estimate (iv), we begin by noting that the arguments used
for estimates (i) and (ii) still work when we further condition on Ej . Indeed, the
estimate for (ii) is unchanged (as we immediately condition on Xn2k

= 0) and
the estimate for (i) is only improved by conditioning on Ej (as this reduces the
variance of Ym0

). Hence, we have

P(Ek | Ej) ≥ c/k,

for a constant c > 0 that does not depend on j. Let Ak be the event that X
visits 0 between times n2k and n2k+1− 4k. Let T ′

k be the number of visits during
this interval, so Ak = {T ′

k ≥ 1} and Ek \Ak ⊆ {Tk − T ′
k ≥ 1}. This implies that

P(Ac
k | Ek ∩ Ej) ≤ E(Tk − T ′

k | Ek ∩ Ej), and hence

E(Tk − T ′
k | Ek ∩ Ej) ≤

E(Tk − T ′
k | Ej)

P(Ek | Ej)
≤ k

c
E(Tk − T ′

k | Ej).

To estimate E(Tk − T ′
k|Ej) we repeat the method that we used for estimate

(iii). Recall that Q1(Xn −Xn2j+1
) ≤ Q1(Xn2k

−Xn2k−1
) = O(4−2k), and so

E(Tk − T ′
k | Ej) ≤

n2k+1∑
n=n2k+1−4k

P(Xn = 0 | Ej)

≤
n2k+1∑

n=n2k+1−4k

Q1(Xn −Xn2j+1)

= O(4−k).

Hence,

P(Ak|Ek ∩ Ej) = 1−O(k4−k) = 1− o(1) as k → ∞,
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uniformly in j. Now

E(Tk | Ek ∩ Ej) ≥ P(Ak | Ek ∩ Ej)E(Tk | Ak ∩ Ej)

≥ (1− o(1)) min
n∈{n2k,...,n2k+1−4k}

E(Tk | Xn = 0)

= Ω(log(4k))

= Ω(k),

where we have again used that the expected number of returns to 0 of a two-
dimensional simple symmetric random walk in its first 2N steps is Ω(log(N)).

6 Recurrence and transience for slowly growing
step sizes

We start by showing that a slowly growing non-decreasing integer sequence
(an)n≥1 gives a transient Rademacher random walk if the set of values it takes
is a little sparse.

Lemma 30. Suppose (an)n≥1 is a non-decreasing sequence of positive integers
which takes values in a set S. Suppose that the value s appears Ls times in
(an) and suppose further that

∑
s∈S 1/s <∞ and, for some ε > 0 and all large

enough s, there is some s′ < s for which Ls′ ≥ εn2. Then the Rademacher
random walk X associated to (an)n≥1 is transient.

Proof. Fix any finite set F . Using the hypothesis about s′, we can apply
Corollary 22 to see that for all large enough s ∈ S, the probability that Xn is
congruent to any element of F (mod s) at the beginning of the block of steps of
size s is at most |F |c(ε)/s. The walk X can only visit F during the s-block if it
is congruent to an element of F modulo s and, since

∑
s∈S 1/s < ∞, the first

Borel–Cantelli lemma shows that almost surely this happens for only finitely
many s ∈ S. Hence, X is transient.

Now we can easily prove Lemma 9, which we restate here for convenience.

Lemma 9. Let f : N → [1,∞) be any function such that f(n) → ∞ as n→ ∞.
Then there exists a non-decreasing sequence (an)n≥1 of integer step sizes for
which an ≤ f(n) for all n and the associated Rademacher random walk is both
irreducible and transient.

Proof. Since we could choose to start with any finite number of steps with a
step size of 0, we may assume without loss of generality that f(n) ≥ 9 for all n.
Let pi = (2i + 1)2 for each i ≥ 1, and choose a sequence ℓ1, ℓ2, . . . of integers
such that for each i ≥ 1 we have

1. ℓ2i ≡ i+ 1 (mod 2),

2. ℓ2i+1 ≡ i (mod 2),

3. ℓi ≥ p2i+1,
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4. f(n) ≥ pi+1 for all n >
∑i

k=1 ℓk.

This is always possible as f(n) → ∞ as n→ ∞. Construct the sequence (an)n≥1

by letting the first ℓ1 terms be p1, the next ℓ2 terms be p2, and so on. That is,
an = pi whenever ci < n ≤ ci+1, where ci =

∑i−1
j=1 ℓj . The final condition in

the list above ensures that an ≤ f(n) for all n. Let (Xn)n≥0 be a Rademacher
walk with step sizes given by the sequence (an)n≥1. Since gcd(pi−1, pi) = 1, the
construction ensures that (an)n≥1 satisfies the hypotheses of Lemma 30, so X is
transient.

It remains to show that X is irreducible. Note that for any i ≥ 1 we have
(i+ 1)p2i − ip2i+1 = 1. By our assumptions on the parity of the ℓi, we have that
in two consecutive blocks where the step sizes are p2i in the first and p2i+1 in
the second, it occurs with positive probability that the total increment in block
2i is (i + 1)p2i and the total increment in block (2i + 1) is −ip2i+1, in which
case the total increment from these two blocks is 1. Likewise, it occurs with
positive probability that the total increment in block i is −(i+ 1)p2i and the
total increment in block (i+ 1) is ip2i+1, so that the total increment from the
two blocks is −1. Hence, X is irreducible.

We now turn to the case of bounded step sizes, and prove Lemma 10, which
states that if

∑∞
n=1 a

2
n = ∞ then the Rademacher random walk X associated to

(an)n≥1 is almost surely unbounded both above and below.

Proof of Lemma 10. To show that (Xn) is almost surely unbounded both below
and above, it suffices to show for any constant C that almost surely Xn ≤ C
i.o. and Xn ≥ C i.o. as well. To prove this, we will show that whenever
P(Xm = x) > 0, we have

P(∃n > m : (Xn − C)(x− C) ≤ 0 | Xm = x) = 1. (8)

For any n > m, the increment Xn − Xm is independent of Xm and has a
symmetric distribution with variance

∑n
k=m+1 a

2
k. Its fourth moment satisfies

E((Xn −Xm)4) = E

( n∑
k=m+1

ϵkak

)4


=

n∑
k=m+1

a4k + 3

n∑
k=m+1

n∑
j=m+1

1{j ̸=k}a
2
ka

2
j

= 3

n∑
k=m+1

n∑
j=m+1

a2ka
2
j − 2

n∑
k=m+1

a4k

≤ 3

(
n∑

k=m+1

a2k

)2

.

We now apply the Paley–Zygmund inequality to the random variable Z
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defined by Z = (Xn −Xm)2.

P

|Xn −Xm| ≥ 1

2

(
n∑

k=m+1

a2k

)1/2
 = P

(
Z >

1

4
E(Z)

)

≥
(
3

4

)2E(Z)2

E(Z2)

≥ 3

16
.

We remark that the above inequality complements the statement of Tomaszewski’s
conjecture, recently proved by Keller and Klein [11], which tells us that

P

|Xn −Xm| ≤

(
n∑

k=m+1

a2k

)1/2
 ≥ 1

2
.

We can now prove (8). Define a sequence of stopping times τ0 = m < τ1 <
τ2 < . . . inductively by

τi = min


n > τi−1 :

1

2

 n∑
k=1+τi−1

a2k

1/2

>
∣∣Xτi−1

− C
∣∣

.

Since
∑∞

k=1 a
2
k = ∞, we have τi <∞ a.s. for every integer i ≥ 0. Let Gi denote

the σ-algebra generated by X1, . . . , Xτi . For each i ≥ 1 we have

P((Xτi − C)(Xτi−1
− C) ≤ 0 | Gi−1) ≥

3

32
.

By the conditional Borel–Cantelli lemma, we find that almost surely there exists
a random i <∞ such that (Xτi −C)(Xτi−1

−C) ≤ 0 and, taking n = τi for the
least such i, we have (Xn − C)(Xm − C) ≤ 0.

7 Transience for sequences that cover all natural
numbers

The main aim of this section is to prove Theorem 5, and then to deduce
Corollary 6.

Theorem 5. Let (an)n≥1 be a non-decreasing sequence of integers, and let Li be
the number of times i appears in the sequence. Suppose that, for all large enough
n, ∑

i≤n

gcd(i,n)=1

Li ≥ 2n2 (1)

and
n−1∑
i=1

i2Li ≥ 4n2 log3(n) · Ln. (2)

Then the Rademacher random walk X associated with (an)n≥1 is transient.
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Proof. Fix C > 0, and let En be the event that the walk is within C of the
origin after one of the steps of size n, that is, En = {∃i : ai = n, |Xi| ≤ C}. We
will show that the probability of these events is summable, and therefore only
finitely of the En occur almost surely. Since the probability that the walk is
C-recurrent is zero for all C, the walk must be transient.

Clearly, the probability of En is 0 if Ln = 0, so suppose that Ln ≥ 1 and
that n is large enough for (1) and (2) to hold. Let N =

∑n−1
i=1 Li so that

aN+1 = · · · = aN+Ln
= n. We split the event En into two cases based on the size

of |XN |. When |XN | is large, the probability that Ln steps of size n will travel
far enough to be within C of the origin is small enough to be summable. When
|XN | is small, we use the fact that XN is well-distributed over the equivalence
classes modulo n, and the probability that steps of size n could possibly get
within C of the origin is O(C/n). By combining this with the probability that
|XN | is small, we find that

∑∞
n=1 P(En) <∞.

First, consider the case where |XN | is large, by which we mean |XN |2 ≥∑n−1
i=1 i

2Li/ log
2(n). Define M :=

∑n−1
i=1 i

2Li/ log
2(n). By the reflection princi-

ple we have

P

(
max

0≤t≤Ln

t∑
i=1

ϵ(N+i)n ≥
√
M

)
= 2P

(
Ln∑
i=1

ϵin ≥
√
M

)
− P

(
Ln∑
i=1

ϵin =
√
M

)

≤ 2 exp

(
− M

2n2Ln

)
.

By our assumption on
∑n−1

i=1 i
2Li, we have that the probability of this event is

at most 2n−2.

Now consider the case where |XN |2 ≤ M . We split the sum XN into
two parts, a small part which ensures that XN is well distributed over the
equivalence classes modulo n, and another part that we know must be large.
Pick a set A ⊆ {1, . . . , N} of size |A| = n2 such that gcd(ai, n) = 1 for all
i ∈ A and

∑
i∈A a

2
i is as small as possible. Let Ac = [N ] \ A, and note

that
∑

i∈Ac a2i ≥ 2n2 log3(n)Ln. Define SA and SAc by SA =
∑

i∈A aiϵi and
SAc =

∑
i∈Ac aiϵi.

Note that the event {|XN | ≤M} is contained in the event

{|SA| ≤ 2 log(n)n2} ∩ {|SAc | ≤ 2n2 log(n)Ln},

and that if En is to occur, there must be some c ∈ [−C,C] for which XN ≡ c
mod n. By our choice of A, for every x, the probability that SA ≡ x mod n
is at most 3/n by Theorem 15, and this implies that, even given the value
of SAc , the probability that there is some c ∈ [−C,C] for which XN ≡ c
mod n is at most 3/n. To finish this case, we will show that the probability
of {|SAc | ≤ 2n2 log(n)Ln} is at most C ′/ log2(n) and that the probability of
{|SA| ≤ 2 log(n)n2} is at least 1 − n−2. These imply that the probability of
En ∩ {|XN | ≤M} is at most

C ′

log2(n)

(
1

n2
+

3

n

)
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Since the probability of En ∩ {|XN | ≥ M} is at most 2n−2, the probability of
En is O(n−1 log−2(n)). Hence, the sum

∑∞
n=1 P(En) < ∞ and almost surely

only finitely many En occur, which means the walk is transient.

Let us bound the probability that |SAc | ≤ 2n2 log(n)Ln. By the Berry–Esséen
Theorem, we have that

P
(
|SAc | ≤ 2n2 log(n)Ln

)
= P

(
|SAc |∑
i∈Ac a2i

≤ 2n2 log(n)Ln∑
i∈Ac a2i

)
≤ P

(
|SAc |∑
i∈Ac a2i

≤ 1

2 log2(n)

)
≤ Φ

(
1

2 log2(n)

)
− Φ

(
− 1

2 log2(n)

)
+ C ′ n− 1∑

i∈Ac a2i

≤ 1√
2π log2(n)

+
C ′

n
.

Finally, we need to bound the probability that |SA| ≤ 2 log(n)n2, for which
we use Lemma 25. Trivially,

∑
i∈A a

2
i ≤ n4 and,

P(SA ≥ 2 log(n)n2) ≤ e−2 log(n).

Given the theorem above, Corollary 6 follows easily. Indeed, we only need to
show that an = ⌊log1+ε(n)⌋ satisfies the appropriate conditions.

Corollary 6. For any α > 1, the Rademacher random walk with step sizes
an = ⌊logα(n)⌋ is transient

Proof. Clearly, (an) is a non-decreasing sequence of integers, so we can apply
Theorem 5 provided the Ln satisfy the necessary conditions. The ith step size ai
equals n exactly when en

1/α ≤ i < e(n+1)1/α , so Ln = e(n+1)1/α − en
1/α

+O(1).
By the Mean Value Theorem, there is x ∈ (n, n+ 1) such that

e(n+1)1/α − en
1/α

=
ex

1/α

αx1−1/α
.

In particular, Ln−1 ≥ 2n2 for large enough n and (1) is satisfied. We also have

n−1∑
i=1

i2Li ≥
n−1∑
i=2

i2

(
ei

1/α

αi1−1/α
+O(1)

)

≥ O(n3) +
1

α

∫ n−1

1

x1+1/αex
1/α

dx

= (n− 1)2e(n−1)1/α +O(en
1/α

/n2).

Comparing this with 4n2 log3(n)

(
e(n+1)1/α

α(n+1)1−1/α +O(1)

)
, we see that (2) is also

satisfied, and we can apply Theorem 5 to finish the proof.

28



8 Unbounded step sequences whose gaps tend to
zero

In this section we prove Theorem 13, which asserts that if the step sizes of a
Rademacher random walk are unbounded with gaps converging to zero, the walk
is either transient or topologically recurrent.

Lemma 31. Suppose (an)n≥1 is a sequence such that lim supn→∞ an = ∞ and
|an − an−1| → 0 as n→ ∞. Let X and X ′ be Rademacher random walks with
step sizes given by (an) started at time k at locations Xk = N and X ′

k = N + d
for some d ̸= 0. Then, for any ε > 0, the walks X ′ and X ′ can be coupled so
that a.s. limn→∞(Xn −X ′

n) exists and lies in [0, ε].

Proof. Think of the problem of coupling X and X ′ as a game as follows. Just
before time i, we know ϵ1, . . . , ϵi−1 and ϵ′1, . . . , ϵ′i−1 and we must choose either
to couple ϵ′i and ϵi so that ϵ′i = ϵi, or to couple them so that ϵ′i = −ϵi. Once
we have made our choice, the value of ϵi is revealed, and ϵ′i is either ϵi or −ϵi
depending on the choice that we made. We win the game if for some i ≥ k we
achieve Xi −X ′

i ∈ [0, ε]. The proof consists of a strategy for winning this game
eventually with probability 1. Once we have won the game we may couple all
subsequent signs to be equal, so that Xi −X ′

i stabilizes.

Our strategy is organised as a sequence of episodes. In each episode we will
win with probability at least 1/4, conditional on all the outcomes in previous
episodes. For i ≥ 1, episode i will begin at time mi−1 + 1 and end at time
mi, where m0 = k. To describe episode i for any i ≥ 1, assume we know mi−1

Xmi−1 and X ′
mi−1

, and assume we have not yet won the game at time mi−1.
Let di = Xmi−1

−X ′
mi−1

. In particular, d1 = d. Let δi = min(ϵ, |di|). Note that
δi > 0 since if di = 0 then we have already won the game. Choose ni ≥ mi−1

sufficiently large that for all n ≥ ni we have |an − an−1| < δi/2. Let

xi =

{
di/2 if di > 0,

−di/2 + δi/2, if di ≤ 0.

Since lim supn→∞ an = ∞, we may find mi > ni such that

ami
− ani

∈ [x− δi/2, x].

Now choose to couple the signs ϵi and ϵ′i driving the movements of the walks
X and X ′ to be equal for each i in the range mi−1 ≤ i ≤ ni − 1 and for
ni + 1 ≤ i ≤ mi − 1. Choose to couple ϵni

= −ϵ′ni
and ϵmi

= −ϵ′mi
.

There are four possible options for X ′
mi

−Xmi
, each having probability 1/4

conditional on the outcomes preceding episode i:

X ′
mi

−Xmi
=


di + 2(ami

+ ani
) ϵni

= −1, ϵmi
= −1,

di + 2(ami
− ani

) ϵni
= +1, ϵmi

= −1,

di − 2(ami − ani) ϵni = −1, ϵmi = +1,

di − 2(ami + ani) ϵni = +1, ϵmi = +1.
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If di > 0 then di − 2(ami
− ani

) ∈ [0, ε]. If di < 0 then di + 2(ami
− ani

) ∈ [0, ε].
Hence, with probability at least 1/4, we have X ′

mi
−Xmi

∈ [0, ε], in which case
we win the game no later than time mi.

Carrying out the procedure above repeatedly until success, we will almost
surely win after finitely many episodes, since in each episode we win with
probability at least 1/4, conditional on the outcomes in previous episodes.

Using this coupling, we show that if the walk hits the interval [a, b] i.o. with
positive probability, then the probability that it hits a second interval i.o. is also
positive.

Corollary 32. Suppose (an)n≥1 is a sequence such that lim supn→∞ an = ∞
and |an − an−1| → 0 as n→ ∞. Let X = (Xn)n≥1 be the Rademacher random
walk with step sizes (an). Let a < b and e < f and take m ∈ N such that
m > (b− a)/(f − e). If P(Xn ∈ [a, b] i.o.) ≥ p, then P(Xn ∈ [e, f ] i.o.) ≥ p/m.

Proof. Divide the interval [a, b] into m equal intervals. By a union bound, at
least one such interval [a′, b′] is visited infinitely often with probability at least
p/m. We have [a′ + t, b′ + t] ⊂ [e, f), where t = e− a′. If t = 0 there is nothing
to do, so let us assume that t ≠ 0 and further that t > 0. The case t < 0 is
similar. Apply the coupling of Lemma 31 starting at time 0 at X0 = 0 and
X ′

0 = t, taking ε = f − (b′+ t). Then the standard Rademacher random walk X ′′

defined by X ′′
n = X ′

n − t visits [e, f ] infinitely often if X visits [a′, b′] infinitely
often, and this occurs with probability at least p/m.

The proof of Theorem 13 follows.

Proof. Suppose X is not transient. Then there exists C <∞ such that

P(|Xn| < C i.o.) > 0.

Apply Corollary 32 taking [a, b] = [−C,C] and p = P(|Xn| < C i.o.), to see that
whenever e < f we have

P(Xn ∈ [e, f ] i.o.) ≥ p

⌈2C/(f − e)⌉
> 0.

Now suppose (for a contradiction) that for some interval [g, h], we have P(Xn ∈
[g, h] i.o.) < 1. Then (by a standard martingale argument) there exists a finite
k′ and two sequences of signs β1, . . . , βk′ and γ1, . . . , γk′ such that

P(Xn ∈ [g, h] i.o. | ϵ1 = β1, . . . , ϵk = βk′) > 2/3

and
P(Xn ∈ [g, h] i.o. | ϵ1 = γ1, . . . , ϵk = γk′) < 1/3.

Take m = 2 in Corollary 32, applied to the walk with step sizes ak′+1, ak′+2, . . . ,
and with

[a, b] = [g − (β1a1 + · · ·+ βk′ak′), h− (β1a1 + · · ·+ βk′ak′)]

and
[e, f ] = [g − (γ1a1 + · · ·+ γk′ak′), h− (γ1a1 + · · ·+ γk′ak′)]

to obtain a contradiction.
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9 Recurrent Rademacher walks where the step
sizes grow arbitrarily quickly

In this section we prove Theorem 3 and Theorem 4, both of which show the
existence of sequences of step sizes which grow arbitrarily quickly yet give
recurrent Rademacher random walks. The constructions used in the proofs of
Theorem 3 and Theorem 4 both work by considering a suitable two-dimensional
random walk and understanding the range of the second coordinate at the times
when the first coordinate is zero, but the proof of Theorem 3 is much simpler.

Theorem 3. Let f : N → R be any non-decreasing function. There is an integer
sequence (an)n≥1 such that an ≥ f(n) for all n and the associated Rademacher
random walk is recurrent.

Proof. We define the sequence (an) in blocks, starting from the empty sequence.
Suppose that a1, . . . , aN have already been chosen, and let M =

∑N
i=1 ai. Since

the two-dimensional simple symmetric random walk is recurrent, we can choose
some L such that the probability that the two-dimensional simple symmetric
random walk (SSRW) has hit every point in {(0, y) : y ∈ [−M,M ]} by time L
is at least 1/2. Now we choose r such that r ≥ g(2L+N) and define the next
2L steps to alternate between r + 1 and r. This sequence clearly satisfies the
necessary growth condition and it remains to prove that the sequence is weakly
recurrent.

Let Ek be the event that the walk hits 0 in the kth block. We claim that
uniformly for any outcome on the preceding blocks, the probability of Ek is at
least 1/2. Suppose that kth block starts at aN+1 and that the walk is at m
immediately before the kth block, i.e. XN = m. Pair up consecutive steps in the
kth block and consider the walk Y = (Yn) where Yn = XN+2n. This starts at m
and takes steps of ±(2r + 1),±1 each with probability 1/4. As before, we define
a two dimensional random walk (xn, yn) by setting (x0, y0) = (0, 0), and then
inductively defining (xn, yn) for n = 1, . . . , L by

(xn, yn) = (xn−1, yn−1) +


(1, 0) if Yn − Yn−1 = 2r + 1,
(−1, 0) if Yn − Yn−1 = −(2r + 1),
(0, 1) if Yn − Yn−1 = 1,
(0,−1) if Yn − Yn−1 = −1.

Clearly, if the walk (xn, yn) hits the point (0,−m), then the walk X has hit zero
and by our choice of L this happens with probability at least 1/2. To finish the
proof that the walk is recurrent, we can apply the Kochen–Stone theorem to the
random variable Zn =

∑n
k=1 1Ek

.

We now turn to the proof of Theorem 4. We will again consider the times
when the first coordinate of a two-dimensional random walk is 0, but we will
have to work with a more complicated two-dimensional random walk and we
will need the following lemma.
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Lemma 33. Define for each n ≥ 1

cn =

n−1∑
m=1

m−3/2

√
1 + logm

.

Consider the two-dimensional Rademacher random walk (Yn, Zn)n≥0 with nth
step ±(1, cn), starting at (Y0, Z0) = (0, 0). Almost surely the set {Zn : Yn = 0}
is dense in R.

From this lemma it is relatively straightforward to prove Theorem 4.

Theorem 4. Let f : N → R be any non-decreasing function. There is a strictly
increasing real sequence (an)n≥1 such that an ≥ f(n) for all n and the associated
Rademacher random walk is topologically recurrent.

Proof. Define for each n ≥ 1

cn =

n−1∑
m=1

m−3/2

√
1 + logm

.

Note that
∑∞

m=1
m−3/2

√
1+logm

<∞, so cn ↗ c∞ as n→ ∞ where c∞ <∞. Also,

cn+1 − cn =
n−3/2

√
1 + log n

.

We will define the step size sequence (an)n≥1 as the concatenation of blocks of
the form (xj + c0, xj + c1, . . . , xj + cnj ), for j ≥ 1, where for each j we choose nj
and then xj suitably large given the previous choices. Let Mj =

∑n1+···+nj−1

n=1 an
be the sum of all the terms in the blocks preceding the jth block. According to
Lemma 33, we may choose nj so that with probability at least 1/2, the walk
(Yn, Zn)

nj

n=0 visits the (1/j)-neighbourhood of each point in {0} × [−2Mj , 2Mj ].
Then choose xj so large that xj ≥ f(n1 + · · ·+ nj). This ensures an ≥ f(n) for
all n. Note that nj → ∞ as j → ∞ and hence Mj → ∞ also. For any t ∈ R,
once Mj + 1/j > t, we have that conditional on Xn1+···+nj−1 , the Rademacher
walk Xn visits the interval (t− 1/j, t+1/j) with probability at least 1/2. Hence,
X is topologically recurrent by the conditional Borel–Cantelli lemma.

It remains to prove Lemma 33.

Proof of Lemma 33. Consider the sequence of successive times 0 = τ1 < τ2 <
τ3 < . . . at which Yn = 0. This is almost surely an infinite increasing sequence
tending to ∞ since the walk Y = (Yn)n≥0 on its own is a simple symmetric
random walk on Z, which is recurrent. The distribution of each increment
Zτi+1 − Zτi conditional on the earlier increments has a symmetric distribution.
Therefore we can condition on the increment sizes |Zτi+1 − Zτi | and obtain a
random Rademacher walk (Zτi)i≥1 with random step sizes bi := |Zτi+1

−Zτi | for
i ≥ 1. We claim that almost surely bi → 0 as i→ ∞ and

∑∞
i=1 b

2
i = ∞. Given

this claim, we may apply Lemma 10 to see that almost surely the Rademacher
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walk (Zτi)i≥1 is topologically recurrent, which is to say that almost surely
{Zn : Yn = 0} is dense in R.

The key observation is that since the sign of Yn is constant for n in the
interval [1 + τi, τi+1 − 1], and Yn = 0 when n ∈ {τi, τi+1}, and cn+1 − cn > 0 for
all n, we have

|Zτi+1
− Zτi | =

∣∣∣∣∣
τi+1∑

n=1+τi

(Yn − Yn−1)cn

∣∣∣∣∣ =
∣∣∣∣∣−

τi+1∑
n=1+τi

Yn(cn+1 − cn)

∣∣∣∣∣
=

τi+1−1∑
n=1+τi

|Yn|(cn+1 − cn) =

τi+1−1∑
n=1+τi

|Yn|
n−3/2

√
1 + log n

.

Since Yn = 0 when n ∈ {τi, τi+1}, the final sum above is unchanged if we replace
the lower limit by n = τi or the upper limit by τi+1.

Let us use the Komlós–Major–Tusnády coupling to couple the simple symmet-
ric random walk Yn to a standard Brownian motion (Bs)s≥0. This is a coupling
with the property that for every α > 0 there is a positive constant cα such that
for all n one has

P
(

max
1≤j≤n

|Bj − Yj |
log n

> cα

)
< cαn

−α.

(See [13, Theorem 7.1.1].) Taking α > 1 and using Borel–Cantelli it follows that
almost surely

lim sup
s→∞

|Bs − Y⌊s⌋|
log s

<∞.

Since |Yn+1 − Yn| = 1 for all n, we also have

lim sup
s→∞

|Bs − Y⌈s⌉|
log s

<∞.

Let E be the (almost surely finite) random variable defined by

E = sup
s≥1

max(|Bs − Y⌊s⌋|, |Bs − Y⌈s⌉|)
1 + log s

.

Then, for each i ≥ 2, we have τi ≥ 2 so the function x−3/2/
√
1 + log x is

decreasing on the interval [τi, τi+1] and hence

τi+1−1∑
n=τi

|Yn|
n−3/2

√
1 + log n

>

∫ τi+1

τi

(|Bs| − (1 + log s)E)
s−3/2

√
1 + log s

ds

and
τi+1∑

n=1+τi

|Yn|
n−3/2

√
1 + log n

<

∫ τi+1

τi

(|Bs|+ (1 + log s)E)
s−3/2

√
1 + log s

ds.

Note that
∫∞
1

(√
1 + log s

)
s−3/2 ds <∞, so the sequence of errors(∫ τi+1

τi

(√
1 + log s

)
s−3/2E ds

)
i≥2
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is almost surely in ℓ1(N) and hence also in ℓ2(N).

Therefore, to show that the sequence (bi)i≥1 =
(∣∣Zτi+1

− Zτi

∣∣)
i≥1

almost
surely tends to 0 but does not lie in ℓ2(Z), it suffices to do the same for the
sequence (Ii)i≥1 defined by

Ii :=

∫ τi+1

τi

|Bs|
s−3/2

√
1 + log s

ds.

We make the change of variable s = et, to get

Ii =

∫ log(τi+1)

log(τi)

|Bet |
e−t/2

√
t+ 1

dt =
∫ log(τi+1)

log(τi)

|Wt|√
t+ 1

dt,

where the process
Wt := B(et)e

−t/2

is a stationary Ornstein–Uhlenbeck process whose stationary distribution π is
Gaussian with mean 0 and variance 1. For this identity in law, see [22, §8.5.1], in
which W is called an ancient Ornstein–Uhlenbeck process. W satisfies the SDE

dWt = −1

2
Wt dt+ dB′

t,

where (B′
t)t∈R is another (two-sided) standard Brownian motion.

The rough idea now is that large increments Ii, exceeding a positive constant
size, correspond to increasingly large excursions of W from 0, which only occur
finitely often, almost surely, but on the other hand the large excursions of W
from 0 whose integral is at least a positive constant occur sufficiently regularly
to give a subsequence of (Ii) whose sum diverges. Some care is needed to make
this precise.

To show that Ii → 0 almost surely as i→ ∞, we consider the excursions of
Wt above −1 and the excursions of Wt below 1. The times log(τi) are times at
which |Yet | = 0 and hence |Bet | ≤ (1 + t)E. There exists a random time t0 <∞
such that

(1 + t)e−t/2E < 1/2 for t ≥ t0.

For i ≥ i0 := ⌈et0⌉, we have τi ≥ i so for all t > log(τi) we have (1 + t)e−t/2E <
1/2. For each i ≥ i0, on the interval τi < n < τi+1, either all Yn > 0, in which
case

Wt > −(1 + t)e−t/2E > −1/2 for all t ∈ [log(τi), log(τi+1)],

or all Yn < 0, in which case

Wt < (1 + t)e−t/2E < 1/2 for all t ∈ [log(τi), log(τi+1)].

It follows that for each i ≥ i0, the integral Ii is dominated either by an
integral of the form

1√
ai + 1

∫ bi

ai

(Wt + 1)dt,
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where [ai, bi] is an excursion interval of W above the level −1 which reaches the
level −1/2, or by an integral of the form

1√
ai + 1

∫ bi

ai

(−Wt − 1)dt

where [ai, bi] is an excursion interval of W below the level 1 which reaches the
level 1/2. Since log(τi) → ∞ as i → ∞, and W hits each of −1 and 1 at an
unbounded set of times almost surely, we have that ai → ∞ as i→ ∞.

The law of the iterated logarithm for Bs as s→ ∞ corresponds to a simpler
statement about the maximal growth of the stationary Ornstein–Uhlenbeck
process (see [22, eq. (8.5.2)]):

lim sup
t→∞

|Wt|√
log t

=
√
2 a.s.

Hence, there is a random time t1 such that

|Wt| < 2
√

log t for all t ≥ t1. (9)

It is known that the hitting times in one-dimensional Ornstein–Uhlenbeck pro-
cesses have exponential tails. However, we could not find a simple single reference
for this fact, and we prove it here. Denote by τx(y) the hitting time of level y
starting from level x. First, from Sato [19] it is known that for x ̸= 0, τx(0) has
a probability density function on (0,∞) given by

|x|√
2π

(et − 1)−3/2et exp

(
− x2

2(et − 1)

)
.

This indeed decays exponentially as t→ ∞, and immediately implies that the
hitting time τx(y) has an exponential tail whenever y lies between x and 0. The
hitting time of a general level y starting from x is bounded above by the hitting
time of 0 starting from x plus an independent hitting time of y starting from
0, so it suffices to show that τ0(y) has an exponential tail, and for this we may
assume y > 0 without loss of generality since the Ornstein–Uhlenbeck process
is symmetric about 0. One way to bound τ0(y) is to run the process starting
at 0 until it hits {−y, y}; if it has hit y then we are done; otherwise run from y
until you first hit 0, then try again, repeating until success. We succeed after a
Geometric(1/2) number of trials. A standard exercise using moment generating
functions shows that the sum of a geometric number of i.i.d. random variables
with exponential tails itself has an exponential tail. Hence it suffices to show
that the hitting time of {−y, y} starting from 0 has an exponential tail. This is
done in Breiman [5, Thm 1] using the explicit form of the Laplace transform
of this hitting time that had been obtained earlier by Darling and Siegert [6].
(Breiman claimed to bound the tail of the first hitting time of y from 0, but we
believe his proof actually bounds the first hitting time of {−y, y} from 0.)

From the exponential tails of hitting times, it follows that the successive
excursions of W above −1 that reach −1/2 have lengths that form an i.i.d. se-
quence with exponential tails. Indeed, the length of each one is the sum of two
independent hitting times: the hitting time of −1/2 starting at −1, and the
hitting time of −1 starting at −1/2. The same applies to successive excursions
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below 1 that reach 1/2. Among both such types of excursion, we now consider
only those whose length is at least 1, since by (9) excursions shorter than this
after time t1 can only produce increments Ii that tend to 0. For each type of
excursion, the nth instance of the remaining long excursions starts at a time
that is at least n, since they all have length at least 1 and are disjoint (although
excursions of the two different kinds can overlap). Hence, if Lt is the length of
the longest excursion of either kind up to time t, then

sup
t≥2

Lt/ log t <∞ a.s.

because of the exponential tail bound that we established above. Combining
this bound on the excursion lengths with the bound (9) on their heights, we get
a bound on the largest integral

∫ bi
ai

|Wt +1| dt where bi − ai ≥ 1 and ai ≤ t: it is
no more than

2
√
log t log t sup

t≥2
Lt/ log t,

which is o(
√
t+ 1) as t→ ∞. It follows that |Zτi+1

− Zτi | → 0 as i→ ∞.

It remains to show that the sequence
(
|Zτi+1

− Zτi |
)
i≥1

almost surely does
not lie in ℓ2(N).

Let us call an excursion of W above −1 a good excursion if it contains an
excursion above 1 whose integral is at least 1.

Consider a good excursion of Wt above −1 that starts at time s and finishes
at time t, where t0 ≤ s < t − 1, with a subinterval (s′, t′) ⊂ (s, t) such that
Wr ≥ 1 for all r ∈ (s′, t′) and

∫ t′

s′
Wr dr > 1. Then there is an excursion of Y

above 0, say from time τi to time τi+1, where

s < log τi < s′ < t′ < log τi+1 < t

and

Ii =

∫ log(τi+1)

log(τi)

Wt√
t+ 1

dt >
1√
t′ + 1

∫ t′

s′
Wt dt >

1√
t′ + 1

.

The number of disjoint good excursions that lie entirely between times 4k−1

and 4k grows as Θ(4k), almost surely as k → ∞. (Again, this follows from
the fact that the hitting times of 1 starting from −1 and vice versa in the
Ornstein–Uhlenbeck process have exponential tails, together with the Markov
property of the Ornstein–Uhlenbeck process.) Hence, the sequence (Ii)i≥1 almost
surely does not lie in ℓ2(N). This completes the proof of Lemma 33.
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