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Abstract

Graph shotgun assembly refers to the problem of reconstructing a graph from the
collection of r-balls around each vertex. We study this problem for an Erdős-Rényi
random graph G ∈ G(n, p), and for a wide range of values of r. We determine the
exact thresholds for r-reconstructibility for r ≥ 3, which improves and generalises
the result of Mossel and Ross for r = 3. In addition, we give better upper and lower
bounds on the threshold of 2-reconstructibility, improving the results of Gaudio and
Mossel by polynomial factors. We also give an improved lower bound for the result
of Huang and Tikhomirov for r = 1.

1 Introduction

When can we reconstruct a graph from information about its subgraphs? The recon-
struction conjecture of Kelly and Ulam [21, 22, 44] asserts that every graph G with at
least 3 vertices can be determined up to isomorphism from its vertex-deleted subgraphs
(i.e. from the multiset {G − v : v ∈ V (G)} of unlabelled subgraphs). There has been
substantial work by many different authors over many years on this conjecture (see e.g.
[10, 9, 5, 24] for surveys and background), and on variants with less information such as
using fewer subgraphs (see e.g. [36, 34, 35, 7, 29, 12]) and smaller subgraphs (see e.g.
[17, 33, 23, 42, 18]) A series of recent papers have looked at the problem of reconstructing
a graph using just local information. In the shotgun assembly problem, we are given the
balls Nr(v) of radius r around each vertex of a graph G and want to reconstruct the
graph G from this information. Problems of this type arise naturally in DNA shotgun
assembly, where the goal is to reconstruct a DNA sequence from a collection of shorter
stretches of the sequence (see [15, 4, 32], among many references), and have also been
considered in the neuronal network context [41]. The shotgun assembly problem for ran-
dom graphs was introduced in an influential paper of Mossel and Ross [30], which also
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raised a number of interesting variants such as the reconstruction of random jigsaws (see
[38, 26, 6, 27, 11]) and random colourings (see [39]); and there is recent work on the
related problem of reconstructing random pictures [37].

In this paper we will be concerned with the shotgun assembly of an Erdős-Rényi
random graph G ∈ G(n, p), which has been the most heavily studied model [31, 30, 16,

19, 14].1 Let us start by defining the problem more carefully. For a graph G, let N
(G)
r (v)

be the graph induced by the vertices at distance at most r from v, where the vertices
are unlabelled except for the vertex v. For an integer r ≥ 1 and graphs G and H, we
say G and H have isomorphic r-neighbourhoods if there is a bijection φ : V (G)→ V (H)
such that for each vertex v of G there is an isomorphism from the r-neighbourhood Nr(v)
around v in G to the r-neighbourhood Nr(φ(v)) around φ(v) in H such that v is mapped
to φ(v). We say that G is reconstructible from its r-neighbourhoods (or r-reconstructible)
if every graph with isomorphic r-neighbourhoods to G is in fact isomorphic to G. The
general problem is to determine for what range of p a random graph G ∈ G(n, p) is with
high probability reconstructible (or non-reconstructible) from its r-neighbourhoods. We
improve on previous bounds for all values of r, and give a fairly complete picture for
r ≥ 3.

For very small p, the general picture is similar for all r. Indeed, we show that at
every radius r there is a phase transition for p around n−

2r+1
2r . If p = o(n−

2r+1
2r ), every

component of the graph contains at most 2r vertices and is contained entirely in an r-ball,
and we reconstruct the graph by iteratively identifying and removing largest components;
on the other hand, if p grows slightly faster than n−

2r+1
2r , then with high probability we

obtain a graph that is not r-reconstructible.
The more difficult question is what happens for larger p. It seems likely that for every

radius r there should be a second phase transition around some threshold t = t(n): if
p = ω(t(n)) then G is with high probability reconstructible from its r-neighbourhoods,

while if p = o(t(n)) and p = ω(n−
2r+1
2r ) then with high probability G is not reconstructible

from its r-neighbourhoods. This was not previously known at any radius. Our results
here prove the existence of this second phase transition for all r ≥ 3, and narrow the gap
for r = 1, 2. We start with a discussion and give some small improvements for r = 1, 2,
and then we move to our main results regarding r ≥ 3.

Radius 1: We begin by looking at reconstruction from balls of radius 1. Gaudio and
Mossel [16] showed that, for any ε > 0, a random graph G ∈ G(n, p) is 1-reconstructible
with high probability when n−1/3+ε ≤ p ≤ n−ε; and fails to be 1-reconstructible with
high probability when n−1+ε ≤ p ≤ n−1/2−ε. This was recently improved in an impressive
paper of Huang and Tikhomirov [19], which showed that there are constants c, C > 0
such that G is 1-reconstructible with high probability when n−1/2 logC n ≤ p ≤ c, while
G fails to be 1-reconstructible if p = o(1/

√
n) and p = ω(log n/n). This determines that

there is a change of behaviour around n−1/2, up to a polylogarithmic gap. We give a
small improvement on the region where G fails to be 1-reconstructible: we improve the
lower bound, and give a slight sharpening of the upper bound. Note that this shows that
some polylogarithmic factor is indeed necessary.

1There is also interesting work on random regular graphs [31], random geometric graphs [2] and
random simplicial complexes [1].
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Theorem 1.1. Let p = p(n) and G ∈ G(n, p). If p = ω(n−3/2) and p ≤
√

logn
25n

then, with

high probability, G cannot be reconstructed from its 1-neighbourhoods.

We further show that the lower bound is sharp.

Theorem 1.2. Let p = p(n) and G ∈ G(n, p). If p = o(n−3/2) then, with high probability,
G is reconstructible from its 1-neighbourhoods.

Radius 2: It is not hard to see that if p = ω(
√

log n/n), then G ∈ G(n, p) is 2-
reconstructible with high probability as the diameter of G is at most 2 with high proba-
bility (and so the 2-balls are the entire graph). Better bounds were given by Gaudio and
Mossel [16] who showed that, for any ε > 0, G is with high probability 2-reconstructible
when n−3/5+ε ≤ p ≤ n−1/2−ε or p ≥ n−1/2+ε. We extend the range at the lower end, and
remove the gap in the middle.

Theorem 1.3. Let p = p(n) and G ∈ G(n, p). There exists a constant δ > 0 such that
the following holds. If p ≥ n−2/3−δ, then G is reconstructible from its 2-neighbourhoods
with high probability.

For slightly sparser graphs, Gaudio and Mossel [16] showed that G fails to be 2-
reconstructible with high probability when n−1+ε ≤ p ≤ n−3/4−ε. We improve both ends
of this, as follows.

Theorem 1.4. Let p = p(n) and G ∈ G(n, p). If p ≤ 1
3
n−3/4 log1/4(n) and p = ω(n−5/4)

then, with high probability, G cannot be reconstructed from its 2-neighbourhoods.

Once again, the lower bound on p in Theorem 1.4 is best possible. This will also be
an immediate corollary of Lemma 3.7.

Theorem 1.5. Let p = p(n) and G ∈ G(n, p). If p = o(n−5/4), then with high probability,
G is reconstructible from its 2-neighbourhoods.

We note that there is still a gap where we do not know whether G can be reconstructed
with high probability, and it would be interesting to remove this.

Question. Determine when G(n, p) is 2-reconstructible. Is there a threshold around
n−3/4 (up to a polylogarithmic factor)?

Radius 3: We now turn to the case where r ≥ 3, where substantially less was known, and
give a fairly complete picture of when G(n, p) is r-reconstructible with high probability.
Mossel and Ross [30] considered reconstruction from balls of radius 3, and showed that
G ∈ G(n, p) is with high probability 3-reconstructible when p = ω(log2 n/n). We improve

on this result, and show that there are two phase transitions: the first is around n−
2r+1
2r ,

and the second is around log2 n
n(log logn)3

.

Theorem 1.6. Let p = p(n) and G ∈ G(n, p). There exist β > α > 0 such that the
following hold.

3



(i) If p = o(n−7/6), then G is reconstructible from its 3-neighbourhoods with high prob-
ability.

(ii) If p = ω(n−7/6) and p ≤ α log2 n
n(log logn)3

, then with high probability G is not recon-
structible from its 3-neighbourhoods.

(iii) If p ≥ β log2 n
n(log logn)3

, then G is reconstructible from its 3-neighbourhoods with high
probability.

Radius 4 or more: A similar picture holds for any fixed radius r ≥ 4 (and indeed if r
grows slowly), except that the location of the second phase transition drops by roughly
a log factor. We prove the following.

Theorem 1.7. Let p = p(n) and G ∈ G(n, p). There exist β > α > 0 such that the
following hold for all 4 ≤ r = o(log n).

(i) If p = o(n−
2r+1
2r ), then G is reconstructible from its r-neighbourhoods with high

probability.

(ii) If p = ω(n−
2r+1
2r ) and p ≤ α logn

rn
, then with high probability G is not reconstructible

from its r-neighbourhoods.

(iii) If p ≥ β logn
rn

, then G is reconstructible from its r-neighbourhoods with high proba-
bility.

We note that, for very sparse graphs, there are results for even larger radii. Mossel and
Ross [30] showed that if p = λ/n, with λ 6= 1, then there are constants cλ, Cλ such that
G is with high probability r-reconstructible if r ≥ Cλ log(n) and with high probability
not r-reconstructible if r ≤ cλ log(n). Very recently sharp asymptotics were obtained by
Ding, Jiang and Ma [14] (including for the case λ = 1).

The paper is organised as follows. In the next section, we give a brief discussion of our
proof techniques, and state some probabilistic lemmas that we will use throughout the rest
of the paper. In Section 3 we give skeleton proofs for Theorems 1.6 and 1.7, breaking the
full proof into a series of (technical) claims that will be proved in Section 6. In Section 4
we prove Theorem 1.3, and in Section 5 we prove Theorem 1.4 and Theorem 1.1.

2 Discussion and definitions

In this section we give short descriptions of some of the main ideas in our proofs. A
very simple, but powerful tool for reconstructibility, known as the ‘overlap method’ was
introduced in the paper of Mossel and Ross [30]. Intuitively, it seems reasonable that if
neighbourhoods of vertices are very different from each other, then one might be able to
identify the vertices in the neighbourhoods of other vertices and reconstruct the graph.
In Nr(v) we can see the entire (r − 1)-neighbourhood of the neighbours of v, so if all
the (r − 1)-neighbours are unique, then we can identify the neighbours of v from its
r-neighbourhoods. This leads to the following lemma.
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Lemma 2.1 ([30, Lemma 2.4]). Suppose that a graph G has unique (r−1)-neighbourhoods.
Then it is reconstructible from its r-neighbourhoods.

We will use this lemma when we prove reconstructibility, more specifically, in the
proofs of Theorem 1.6(iii) and Theorem 1.7(iii). However, proving the uniqueness of
neighbourhoods is not always a simple task, especially for such a large range of p.
Moreover, for values of r greater than three, we will not have uniqueness of (r − 1)-
neighbourhoods for the entire range of p we consider and we cannot apply the method
as is. We will instead use the idea of the overlap method to handle high-degree vertices
and then apply a different argument for low degree vertices.

The reconstructibility part of the first phase transition, that is reconstructibility when
p = o(n−

2r+1
2r ), will follow easily from the fact that all components are with high proba-

bility small enough to be guaranteed to be fully be contained in an r-neighbourhood.
For showing non-reconstructibility, we need to prove that there exist two non iso-

morphic graphs that have the same collections of r-neighbourhoods. When considering
smaller values of p, that is, closer to the first phase transition, our reasoning for non-
reconstructibility will lie in the small components. Indeed, for such values of p there
will be components that are paths with 2r vertices with high probability. The non-
reconstructibility will follow from the fact that the collection of r-neighbourhoods of
two disjoint copies of P2r (a path with 2r vertices), is isomorphic to the collection of
r-neighbourhoods of disjoint copies of P2r−1 and P2r+1, and therefore graphs containing
these cannot be uniquely identified. Interestingly, for r ≥ 4 being non-reconstructible
coincides with the existence of these small components, and the second threshold for
reconstructibility is around the point where we stop seeing two disjoint copies of P2r as
induced isolated subgraphs. For r ≤ 3 however, a different phenomena occurs. Roughly
speaking, it turns out that (with high probability) we can find two pairs of vertices, where
the (r − 1)-neighbourhoods are isomorphic, but the r-neighbourhoods are not. In this
case, we can switch the crossing edges between these pairs and get a graph with the
same collection of r-neighbourhoods, but which are not isomorphic. This property will
continue beyond the existence of two isolated copies of P2r for r ≤ 3, and for r = 3 it is
instead the disappearance of this property which coincides the second phase transition.
This stands in contrast to the case r ≥ 4, where the given balls are big enough to avoid
this situation and we used the small components to show non-reconstructibility.

We use the following notation to distinguish between different types of neighbour-
hoods. For a vertex v, we let Γr(v) be the set of vertices that are at distance exactly r
from v. We write |Γr(v)| for the number of such vertices. In the special case that r = 1 we
simply write Γ(v) and we use d(v) = |Γ(v)| to denote the degree of the vertex v. Finally,

as mentioned above, we let N
(G)
r (v) be the graph induced by the vertices at distance at

most r from v, where the vertices are unlabelled except for the vertex v. We also use
Γ≤r(v) to denote the set of vertices of the graph N

(G)
r (v) (i.e. the vertices at distance at

most r from v). In some proofs we will consider subgraphs consisting of neighbourhoods
of several vertices and we will give the relevant notation as and when it is needed.

Remark 2.2. One can also consider exact reconstructibility. A graph G is said to be
exactly reconstructible from its r-neighbourhoods if G is the unique labelled graph with
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its collection of r-neighbourhoods, i.e. for any H such that N
(G)
r (v) ' N

(H)
r (v) for every

v ∈ V (G), we have H = G. Lemma 2.1 holds for exact reconstructibility as well, but not
all reconstructible graphs are exactly reconstructible. For example, any graph with two
disjoint edges as components cannot be reconstructed exactly from its neighbourhoods. In
particular, this means there is some α > 0 such that G(n, p) is not exactly reconstructible
with high probability when p is both ω(1/n2) and at most α log n/n. This contrasts with
Theorems 1.6(i), 1.7(i), 1.2, and 1.5 which show that G(n, p) is reconstructible for some
this range. When p ≤ 1/2 and p = ω(log4(n)/(n log log n)), the degree neighbourhoods of
vertices are unique with high probability [13]. When this is true, exact reconstructibility
from r-neighbourhoods is the same as non-exact reconstructibility for all r ≥ 2. It follows
that, when p ≤ 1/2, we have exact reconstructibility in Theorem 1.3 and a minor adaption
of the proof of Theorem 1.6(iii) would give exact reconstructibility as well.

2.1 Probability prelims

In this section we state some well known probabilistic bounds which will be useful later
in the paper. We start by stating a simple fact about the median(s) of the binomial
distribution.

Fact 2.3. Let X ∼ Bin(n, p). Then P(X ≥ dnpe) ≤ 1/2.

We will make frequent use of the following well-known bounds on the tails of the
binomial distribution, known as a Chernoff bounds (see e.g. [3], [20], [28]).

Lemma 2.4 (Follows from Theorem 4.4 in [28]). Let X ∼ Bin(n, p) and ε > 0. Then

P(X ≥ (1 + ε)np) ≤ exp

(
− ε2µ

2 + ε

)
,

P(X ≤ (1− ε)np) ≤ exp

(
−ε

2µ

2

)
.

We will also be interested in tail bounds for binomial distributions where µ → 0 as
n→∞, for which we use the following simple bound.

Lemma 2.5. Let X ∼ Bin(n, p) and k ∈ N. Then

P(X ≥ k) ≤ e(np)k.

Proof. We have

P(X ≥ k) =
n∑
j=k

(
n

j

)
pj(1− p)n−j ≤

n∑
j=k

nj

j!
pj ≤ (np)k

∞∑
j=1

1

j!
,

and the result is immediate.

We will also want to bound the probability that a binomial (or Poisson binomial) takes
a specific value, and we now give several useful lemmas bounding these probabilities.
The first, due to Rogozin [40], bounds the probability of a mode of independent discrete
random variables.
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Theorem 2.6 (Theorem 2 in [40]). Let X1, . . . , Xn be a sequence of independent discrete
random variables, and let S = X1 + · · ·+Xn. Let pi = supx P(Xi = x). Then

sup
x

P(S = x) ≤ C√∑n
i=1(1− pi)

where C is an absolute constant.

The following estimation can be derived from Theorem 1.2 and Theorem 1.5 in [8].

Theorem 2.7. Suppose X ∼ Bin(n, p) where p = p(n) may depend on n. Let q = 1− p
and define σ(n) by σ =

√
pqn. If σ →∞ as n→∞, then uniformly over all 1 ≤ h ≤ σ5/4

such that pn+ h ∈ Z, we have

P(X = pn+ h) = (1 + oσ(1))
1√

2πσ2
exp

(
− h2

2σ2

)
.

In the proof of Theorem 1.3, we will approximate the sum of Bernoulli random vari-
ables with a Poisson random variable for which we use the following result. The first
version of this result was given by Le Cam [25] in 1960, but there are now several vari-
ations and different proofs, and we refer the reader to [43] for more discussion. We will
use the following the version.

Theorem 2.8 (Le Cam Theorem). Let X1, . . . , Xn be independent Bernoulli random
variables with success probabilities p1, . . . , pn. Let S = X1 + · · ·+Xn and let µ denote the
expectation of S (i.e. µ = E[S] =

∑n
i=1 pi). Then

∞∑
k=0

∣∣∣∣P(S = k)− µke−µ

k!

∣∣∣∣ < 2 min

{
1,

1

µ

} n∑
i=1

p2
i .

3 Reconstruction from r-neighbourhoods, r ≥ 3

In this section we use a series of lemmas to prove Theorem 1.6 and Theorem 1.7, but we
delay proving the lemmas until the later sections. Both of these proofs employ different
arguments for different ranges of p, although the proofs of parts (i) and (ii) are very
similar in both cases.

We start by recording some simple facts about the structure of random graphs.

Lemma 3.1. Let r ≥ 1. If p = o(n−
2r+1
2r ), then with high probability the largest component

of a random graph G ∈ G(n, p) has size at most 2r.

Proof. It is enough to show that, with high probability, G does not contain a tree on
2r+ 1 vertices as a subgraph. This follows immediately from Markov’s inequality, as the
expected number of such subtrees is O(n2r+1p2r) = o(1).

Lemma 3.2. There exists an α > 0 such that the following holds for all 1 ≤ r = o(log n).

If p is such that pn
2r+1
2r = ω(1) and p ≤ α logn

rn
, then G ∈ G(n, p) contains two paths of

2r + 1 vertices as components with high probability.

7



Proof. Fix α < 1/2. Let X be the number of path components with 2r+ 1 vertices. The
expectation of X is

f(r, n) :=
1

2

(
n

2r + 1

)
(2r + 1)!p2r(1− p)(2r+1)(n−2r−1)+(2r+1

2 )−2r.

We may assume that p ≥ λn−
2r+1

2r , where λ = λ(n) is a function that tends to ∞ slowly

with n. Then for p in the range [λn−
2r+1
2r , α logn

rn
], the quantity f(r, n) is minimized by

taking p = λn−
2r+1
2r when α < 1/2. Thus, E[X] ≥ λr/3 for all values of p we consider; in

particular E[X]→∞ as n→∞.
We now bound E[X2]. Let γ be the probability that a specific set of 2r + 1 vertices

induces a path component. Note that distinct components cannot share vertices, so E[X2]
decomposes as E[X] plus a sum over disjoint pairs of (2r + 1)-sets. The probability that
two specific disjoint sets of 2r+1 vertices both induce path components is γ2(1−p)−(2r+1)2 ,
as there are (2r + 1)2 potential edges between the sets. Thus E[X2] = E[X] + E[X(X −
1)] ≤ (1 + o(1))E[X]2. By Chebyshev’s inequality, we obtain that with high probability
X ≥ 2.

Lemma 3.3. There exists β > 0 such that the following holds for all r ≥ 4, r = o(log n),
and p ≥ β logn

rn
. Let G ∈ G(n, p), and let H be the subgraph of G induced by the vertices

with degree at most np/2. Then with high probability the maximum component size of H
is at most r − 3.

Proof. Fix β > 30. It is enough to bound the probability of the event E that there is
a set A of r − 2 vertices such that G[A] is connected and each vertex in A has at most
np/2 neighbours outside A. For fixed A, these properties are independent. Note that
there are O(nr−2) choices for A; and, for fixed A, the probability that G[A] is connected
is O(pr−3). Let X ∼ Bin(n− r+ 2, p). Then the probability that v ∈ A has at most np/2
neighbours outside A equals P(X ≤ np/2), which by a Chernoff bound (Lemma 2.4) is

at most e−
1
9
np. Thus

P(E) = O(nr−2pr−3e−
1
9
np(r−2)) = o(1),

for β > 30, r = o(log n), and p > β logn
rn

.

We will also need several facts about small balls in random graphs. The proofs of
these are more complicated so we postpone them to Section 6.

Lemma 3.4. For any ε > 0, there exists β > 0 such that, for β log2(n)

n(log logn)3
≤ p ≤ n−2/3−ε,

the 2-neighbourhoods of G ∈ G(n, p) are unique with high probability.

Lemma 3.5. Suppose log2/3(n)
n

≤ p ≤ log2(n)
n

. Then, with high probability, there are no
two vertices x, y of G ∈ G(n, p) with degree at least np/2 such that the 3-balls around x
and y are isomorphic i.e. the 3-balls around vertices with degree at least np/2 are unique.

Lemma 3.6. Let α > 0 be a sufficiently small constant and suppose log2/3(n)
n

≤ p ≤
α log2(n)
n(log logn)3

. Then, for G ∈ G(n, p), with high probability there are distinct vertices

x, y, u, v such that xy, uv ∈ E(G) and xv, yu /∈ E(G) and the graph G′ obtained from
G by deleting xy, uv and adding xv, yu satisfies the following:
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1. G and G′ are not isomorphic.

2. G and G′ have the same collection of 3-balls.

We are now ready to move to the proofs of the theorems. For the first phase transition,
we start by proving the following lemma.

Lemma 3.7. Let G ∈ G(n, p). There is a constant α > 0 such that, for all r ≥ 1,

lim
n→∞

P(G is r-reconstructible) =

1, if p = o
(
n−

2r+1
2r

)
,

0, if p = ω
(
n−

2r+1
2r

)
and p ≤ α logn

rn
.

Proof. For the sparse regime, we note first that if a component has at most 2r vertices,
then it is contained in the r-ball around some vertex, and if there is a component with
at least 2r + 1 vertices, there must be an r-ball with at least 2r + 1 vertices. Suppose
there is no such r-ball. Then we start by choosing an r-ball with as many vertices as
possible: this gives us an entire component C, and from this we can determine the r-balls
of all vertices in C. We now delete all these r-balls from our collection, and repeat on
the remainder (which consist of the r-balls of G with C deleted). This will reconstruct
the graph G, and the claim follows since Lemma 3.1 implies that every component has
at most 2r vertices with high probability.

We now move to the proofs of Theorem 1.6 and Theorem 1.7. As above we will use a
series of claims regarding the structure of a random graph to prove the results. Since the
proofs of some of these claims are long and technical, we delay the proofs to Section 6.

Proof of Theorem 1.6(i) and Theorem 1.7(i). Follows immediately from Lemma 3.7.

Proof of Theorem 1.6(ii) and Theorem 1.7(ii). Theorem 1.7(ii) follows immediately from
Lemma 3.7, but the lemma does not give the entire range of p values needed in The-
orem 1.6(ii), and we need to use another argument for the larger values of p. To
cover the remaining region, it is enough to show that there exists α > 0 such that
G ∈ G(n, p) is not reconstructible from its 3-neighbourhoods with high probability when
log2/3(n)

n
≤ p ≤ α log2(n)

n(log logn)3
, and this is the content of Lemma 3.6.

Proof of Theorem 1.6(iii). Theorem 1.3 shows there is a constant δ > 0 such that the
graph can be reconstructed from its 2-neighbourhoods with high-probability when p ≥
n−2/3−δ. Hence, we can assume that β log2(n)

n(log logn)3
≤ p ≤ n−2/3−δ/2, and it follows from

Lemma 3.4 that the 2-neighbourhoods are unique with high probability. The result now
follows immediately by applying Lemma 2.1.

Proof of Theorem 1.7(iii). By Theorem 1.6(iii), G ∈ G(n, p) is reconstructible with high
probability from its 3-neighbourhoods when p = Ω(log2(n)/(n log log n)), so we may
assume that p = O(log2(n)/n). We use the overlap method to reconstruct the portion of
the graph induced by vertices of moderately large degree; a further argument is needed
to reconstruct the rest of the graph.

Let V1 be the vertices of G with degree at least np/2 and let V2 = V (G) \ V1; for
i = 1, 2, let Hi be the subgraph induced by Vi. For each vertex v, we can determine
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from its 4-ball whether v ∈ V1 or v ∈ V2; furthermore, by Lemma 3.5, we can with high
probability reconstruct H1, as adjacencies between vertices in V1 can be determined from
their 4-balls (in G).

Now consider H2. By Lemma 3.3 we may assume that all components of H2 have at
most r − 3 vertices, and note that we can easily check that this holds from the r-balls.
Consider a component C of H2. For each vertex v of C, the (r−4)-ball around v contains
all vertices of C, so the (r−3)-ball contains all vertices of V1 that are adjacent to a vertex
of C; and the r-ball around v contains the 3-balls around these vertices. It follows that
by looking at the r-ball around v, we can identify C (up to isomorphism), and for each
vertex of C, we can determine which vertices of V1 it is adjacent to (using uniqueness of
3-balls for V1). We obtain this information |C| times for each component C of H2 (once
for each vertex of C), and so allowing for multiplicities we can reconstruct all components
of H2 and the way they are attached to H1.

4 Reconstruction from 2-neighbourhoods

In this section we prove Theorem 1.3. Since, Gaudio and Mossel [16] proved that, for all
ε > 0, a random graph G ∈ G(n, p) can be (exactly) reconstructed from its collection of
2-balls if n−1/2+ε ≤ p ≤ 1/2 with high probability, we may assume that p ≤ n−16/35.

We use an approach similar to that of Gaudio and Mossel [16]. We will colour each
edge uv by a colour which can be determined from the 2-neighbourhoods of both u and
v, and we attempt to reconstruct the graph from the edge-coloured stars around the
vertices. Gaudio and Mossel [16] showed that this information is sufficient to reconstruct
an edge-coloured graph when no two edges have the same colour. In order to prove our
result, we will use colourings which satisfy a slightly weaker condition which is easier to
prove.

Lemma 4.1. Let G be an edge-coloured graph such that every pair of edges of the same
colour share a vertex. Then by looking only at the number of edges of each colour adjacent
to each vertex, G can be reconstructed exactly.

Proof. Let our edge-coloured stars be S1, . . . , Sn, and label the corresponding centres
v1, . . . , vn. Fix a colour c and consider the subgraph H consisting of all edges with this
colour. From the degree sequence of H we can check if H (up to isolated vertices) is a
triangle or a star. If H is not one of these, then G must have two disjoint edges of the
same colour. In either case, we can reconstruct H by joining vi and vj with an edge in
colour c whenever one of vi and vj is a vertex of largest degree in colour c. The graph G
is the union (over all colours) of these subgraphs.

We now give the edge colouring we will consider and show that with high probability
no two disjoint edges have the same colour. For an edge uv, let Cuv be the subgraph
of G induced by the vertices at distance at most 2 from both u and v, and where we
distinguish the edge uv. We write Cuv ' Cxy if there is a bijection f : V (Cuv)→ V (Cxy)
such that ab ∈ E(Cuv) if and only if f(a)f(b) ∈ E(Cxy), and {f(u), f(v)} = {x, y}. We
will refer to each such isomorphism class as a colour. The theorem will therefore follow
from the above lemma if we can prove the following.

10



vu

Figure 1: An example of one the degrees we will use to show the Cu,v are unique. The
vertex adjacent to u and v shown in red will be problematic and we will view its degree
as an “error”.

Lemma 4.2. There exists a constant δ > 0 such that the following holds. Suppose
n−2/3−δ ≤ p ≤ n−16/35, and let u, v, x, y be distinct vertices. The probability that uv and
xy are edges, and Cuv ' Cxy is o(n−4).

Before turning to the proof of Lemma 4.2, we explain how to use it to prove Theo-
rem 1.3.

Proof of Theorem 1.3. For each edge uv in G ∈ G(n, p), we colour the edge uv with the
isomorphism class of Cuv, and note that for each vertex u it is possible to determine the
colour of all edges incident with u from the 2-ball around u. It follows from Lemma 4.2
that with high probability no two disjoint edges have the same colour. Then by Lemma 4.1
we can reconstruct G.

We next sketch the proof of 4.2, and after that give the full details.

Sketch proof of Lemma 4.2. Our strategy is simple: suppose that Cuv and Cxy are iso-
morphic with u mapping to x and v mapping to y. Then it must be the case that the
unordered degree sequence of Γ1(v) into Γ2(u) \ Γ1(v) and of Γ1(y) into Γ2(x) \ Γ1(y)
are equal, and we will show that the probability of this event is o(n−4). We note that
although we cannot see the whole of Γ2(u) on Cuv, we do see all the edges from Γ1(v) to
Γ2(u) and we can read off the degree sequence of Γ1(v) into Γ2(u) \Γ1(v). By symmetry,
the probability of an isomorphism which maps u to y and v to x is also o(n−4).

Suppose that ω(n2/3) = p ≤ n−11/20, so that n2p3 = ω(1) and n2p2 = O(n9/10). With
probability 1 − o(n−4), the number of vertices in the neighbourhood of a single vertex
is Θ(np) and the number of vertices in the second neighbourhood of a single vertex is
Θ(n2p2). For simplicity let us assume that there are no edges between u, v, x and y, and
that the neighbourhoods of u, v, x and y are all disjoint, and that there are no vertices
in Γ1(i) and Γ2(j) for all i, j ∈ {u, v, x, y}. In actuality, we cannot make this assumption
and we must handle some small “errors” that this assumption avoids. Given a particular
vertex i ∈ Γ1(v), let the number of edges from this vertex into Γ2(u) \ Γ1(v) be b(i).
This follows a binomial distribution with Θ(n2p2) trials and success probability p. Since,
the expected value of b(i) is Θ(n2p3) which is importantly ω(1), Lemma 2.7 gives that
the cnp3/2 most likely values have probability Θ(n−1p−3/2) for some constant c. Our
assumption means that the b(i) where i ∈ Γ1(v) are independent, and the number of
vertices in Γ1(v) with a fixed likely degree is a binomial random variable with mean

Θ(np · n−1p−3/2) = Θ(p−1/2).
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Our assumption also means that the numbers of vertices in Γ1(v) and in Γ1(y) with this
likely degree are independent, and the probability there are the same number is O(p−1/4).
We can repeat this for Θ(n2p3) different likely degrees to show that the probability that
Cuv and Cxy are isomorphic is o(n−4).

For the other values of p, we use a similar approach with slight differences. For
example, note that Θ(n2p2) = ω(n) when p = ω(n−1/2) and so we must be more careful
bounding the size of the second neighbourhoods. When n−2/3−δ ≤ p ≤ n−2/3 log log n,
the expected value of b(i) is still Θ(n2p3), but this may now tend to 0 as n → ∞. This
means the probability that b(i) is equal to a value k is of the form Θ((n2p3)k), and the
expected number of b(i) equal to k is Θ(n1/3(n2p3)k) = Ω(n1/3−3kδ). By letting k vary
over a constant number of small values where 3kδ < 1/3, we can obtain a bound of
o(n−4).

We remark that our proof actually gives an efficient algorithm for reconstructing a
random graph G ∈ G(n, p) from its 2-neighbourhoods which succeeds with high proba-
bility. Instead of colouring the edge uv by the isomorphism class of Cuv, we can colour
it by a combination of the unordered degree sequence of Γ1(v) into Γ2(u) \Γ1(v) and the
unordered degree sequence of Γ1(u) into Γ2(v) \ Γ1(u). The proof of Lemma 4.2 shows
that any two disjoint edges get the same colour with probability o(n−4), and Lemma 4.1
applies with high probability. These degree sequences can be clearly be calculated effi-
ciently.

Proof of Lemma 4.2. Fix two disjoint edges uv and xy. Let M be the set of vertices
which are adjacent to at least 2 of the vertices in {x, y, u, v}. These vertices introduce
dependence between the degree sequences we care about, and we will view these vertices
as introducing an “error” of size at most |M |. We are therefore interested in an upper
bound for |M |. There are 6 pairs of vertices from {x, y, u, v} and the probability that
a vertex is adjacent to a given pair is p2, so |M | is dominated by a Bin(n, 6p2) random
variable.

Claim 4.3. Let

m =

{
12n1/9 p ≥ n−11/20,

40 p ≤ n−11/20.

Then,
P(|M | > m) = o(n−4).

Proof. The first case follows almost immediately from the Chernoff bound in Lemma 2.4.
Indeed, since p ≤ n−16/35 ≤ n−4/9, |M | is clearly dominated by a Bin(n, 6n−8/9) random
variable, and the probability that this exceeds 12n1/9 is at most exp(−2n1/9) = o(n−4).

The second case follows from Lemma 2.5. In this case, m is stochastically dominated
by a Bin(n, 6n−11/10) random variable and

P(m ≥ 41) ≤ e(6n−1/10)41 = o(n−4).

We now look to bound the size of the neighbourhood of a vertex.
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Claim 4.4. Fix a vertex i, and let

λ(i) = (n− 1− d(i))(1− (1− p)d(i).

Then with probability 1− o(n−4) we have

np

2
≤ d(i) ≤ 2np,

and
||Γ2(i)| − λ(i)| ≤ (np)5/4.

Proof. The degree of i has distribution Bin(n − 1, p) so using a Chernoff bound (see
Lemma 2.4), the probability that d(i) is less than np/2 is at most

4 exp

(
−(n− 2)2p

8(n− 1)

)
= exp(−Θ(np)) = o(n−4).

In the other direction, the other bound in Lemma 2.4 shows that the probability d(i) ≥
2np is also at most 4 exp(−np/3) = o(n−4).

Given d(i), the size of the second neighbourhood of i is distributed as

X ∼ Bin(n− 1− d(i), 1− (1− p)d(i)),

and E[X] = λ(i). If λ(i) = ω(log8(n)), then

P
(
|X − λ(i)| ≥ λ(i)9/16

)
≤ exp(−Θ(λ(i)1/8)) = o(n−4)

. Hence, it suffices to prove that with probability o(n−4) we have λ(i) = ω(log8(n)) and
(for large enough n) λ(i)9/16 ≤ (np)5/4.

For the first statement, we may assume that np/2 ≤ d(i) ≤ 2np. Using that 1− t ≤
e−t ≤ 1− t/2 for all t ∈ [0, 1], we have

λ(i) = (n− 1− d(v))
(
1− (1− p)d(i)

)
≥ n

2

(
1− (1− p)np/2

)
≥ n

2
(1− enp2/2)

≥ n
2

min{1− e−1, np2/4}

for large enough n. This is ω(log(n)) in our range of p.
For the second statement, note that λ(i) ≤ n(1− (1− p)2np) ≤ 2n2p2, by Bernoulli’s

inequality.

We will shortly reveal the edges from Γ1(u) and from Γ1(x) to discover their second
neighbourhoods. Unfortunately, this may reveal some edges from Γ1(v) to Γ2(u) \ Γ1(v).
For example, if there is a vertex in Γ1(v) which is also in Γ2(x) \ Γ1(y), then we will
be revealing some of its neighbours and this will affect the distribution of its degree to
Γ2(u) \ Γ1(v). Using the following lemma, we may assume that no vertex in Γ1(v) has
many neighbours in Γ1(x), and this limits the effects of revealing the edges.
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Claim 4.5. If n−11/20 ≤ p ≤ n−4/9, then the probability there exists a vertex i 6∈ {u} ∪
Γ1(u) which is adjacent to at least (n2p3)

1/4
vertices in Γ1(u) is o(n−4).

If p ≤ n−11/20, then the probability there exists a vertex i 6∈ {u} ∪ Γ1(u) which is
adjacent to at least 51 vertices in Γ1(u) is o(n−4).

Proof. Suppose first that n−11/20 ≤ p ≤ n−4/9.For a given vertex i, the number of neigh-
bours in Γ1(u) is a binomial random variable with d(u) = |Γ1(u)| trials and success
probability p. We may assume that d(u) ≤ 2np, and applying a Chernoff bound from

Lemma 2.4, we find that the probability that i is adjacent to at least (n2p3)
1/4

vertices
in Γ1(u) is at most

exp
((
−Θ(n2p3)1/4

))
,

provided np5/2 → 0. There are at most n choices for i and applying a union bound
completes the proof.

To prove the second part of the claim where p ≤ n−11/20, we use Lemma 2.5. For
a given vertex i, the number of neighbours is dominated by binomial random variable
with mean 2np2 ≤ 2n−1/10. Hence, by Lemma 2.5, the probability that a vertex has at
least 51 neighbours in Γ1(u) is O(n−51/10). Taking a union bound over all choices for the
vertex i, the probability that any suitable i is adjacent to at least 51 vertices is o(n−4) as
required.

We now assume that |M | is bounded above by m, that the size of the neighbourhoods
of u, v, x and y are all in [np/2, 2np] and that the size of the second neighbourhoods of
u and x are within (np)5/4 of λ(u) and λ(x) respectively. We also assume no vertex in

Γ1(v) has more than (n2p3)
1/4

if n−11/20 ≤ p ≤ n−4/9, or 51 if p ≤ n−11/20, neighbours in
each of Γ1(u), Γ1(x) and Γ1(y), and similarly for the vertices in Γ1(y). The above claims
show that the probability that any of these events do not occur is o(n−4). If there is
an isomorphism from Cuv to Cxy which maps u to x, then it is certainly the case that
|Γ1(u)| = |Γ1(x)|, and we also assume this event occurs. Note that this last assumption
implies that λ(u) = λ(x), and we denote the quantity by λ. To check that these events
occur, we reveal the edges from u, v, x and y, the edges from Γ1(u) and Γ1(x) and the
edges between the neighbours of u, v, x and y. None of the other edges need to be
revealed and they are still each present independently with probability p.

We now consider the number of edges from each vertex in Γ1(v) to Γ2(u) \Γ1(v), and
bound the probability that this unordered degree sequence equals the one from Γ1(y) to
Γ2(x) \ Γ1(y). Let

A = {x, y, u, v} ∪ Γ1(u) ∪ Γ1(v) ∪ Γ1(x) ∪ Γ1(y).

For a vertex i ∈ Γ1(v), let Yi be the number of edges from i to Γ2(u) \ Γ1(v), that is

Yi =
∑

w∈Γ2(u)\A

Xi,w +
∑

w∈(Γ2(u)\Γ1(v))∩A

Xi,w.

The second term consists of (indicators for the) edges adjacent to u, v, x or y and
edges between the neighbourhoods of those vertices. In particular, the second term is
already known and we denote the known quantity by εi. The assumptions we have made

imply that εi ≤ ε where we have ε = 3(n2p3)
1/4

+4 if n−11/20 ≤ p ≤ n−16/35 and ε = 154 if
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p ≤ n−11/20. Provided that i 6∈ {u, v, x, y}∪M , we have not revealed any of the indicator
variables in the first sum, and Yi − εi is a binomial random variable with λ+O((np)5/4)
trials and success probability p.

Similarly, for j ∈ Γ1(y), let Y ′j be the degree of j formed by edges to Γ2(x) \ Γ1(y),
that is

Y ′j =
∑

w∈Γ2(x)\A

Xj,w +
∑

w∈(Γ2(u)\Γ1(y))∩A

Xj,w,

and let ε′j =
∑

w∈(Γ2(u)\Γ1(y))∩AXj,w. Define B1 and B2 by B1 = Γ1(v) \ (M ∪ {u, v, x, y})
and B2 = Γ1(y) \ (M ∪ {u, v, x, y}), so that the set

{Yi − εi : i ∈ B1} ∪ {Y ′j − ε′j : j ∈ B2}

is made up of independent binomial random variables, each with success probability
p. Indeed, if Yi1 − εi1 and Yi2 − εi2 (i1 6= i2) are not independent, then there must
be w1, w2 ∈ Γ2(u) \ A such that {i1, w1} = {i2, w2}. Since i1 6= i2, we would have
i1 = w2 ∈ Γ2(u) \ A, but i1 ∈ A. If there are i ∈ B1 and j ∈ B2 such that Yi − εi and
Y ′j − εj are not independent, there must be w ∈ Γ2(u) \ A and w′ ∈ Γ2(x) \ A such that
{i, w} = {j, w′}. Since i 6∈M and i ∈ Γ1(v), we cannot have i ∈ Γ1(y) and so i 6= j. This
means i = w′, but w′ ∈ Γ1(v) ⊆ A, a contradiction.

If Cuv is isomorphic to Cxy with u mapping to x, then the multisets {Yi : i ∈ Γ1(v)}
and {Y ′j : j ∈ Γ1(y)} must be equal. Equivalently, the number of Yi and Y ′j equal to k
must be equal for every choice of k. The Yi where i 6∈ B1 are potentially problematic,
but there are at most m + 4 of them and so we ignore them and consider the multiset
{Yi : i ∈ B1} which is “close” to the multiset {Yi : i ∈ Γ1(v)}. Likewise we can consider
the multiset {Y ′j : j ∈ B2} which is “close” to the multiset {Y ′j : j ∈ Γ1(y)}. As these
multisets are only “close” to the multisets that must be equal, the number of Yi and Y ′j
equal to k in these multisets may differ by up to m+ 4.

Let Zk be the number of the Yi, where i ∈ B1, which are equal to k and note that
Zk is the sum of |B1| independent Bernoulli random variables (with potentially different
probabilities due to different εi). Similarly, let Z ′k be the number of the Y ′j , with j ∈ B2

which are equal to k.
Let µ = |Γ2(u)\A|p and µ′ = |Γ2(x)\A|p, so that E[Yi − εi] = µ and E

[
Y ′j − ε′j

]
= µ′.

Since |A| = O(np) and Γ2(u) and Γ2(x) are both λ + O((np)5/4), both µ and µ′ are
pλ+O(n5/4p9/4). Let ki = max{dµe, dµ′e}+ε+i, and let ` be a quantity to be determined.
We reveal the values of Zki for i ∈ [`], and call these our target values. As discussed above,
if there is an isomorphism mapping Cuv to Cxy which sends u to x, it must be the case
that |Zki − Z ′ki | ≤ m + 4 for all i ∈ [`], and we will iteratively bound the probability
that |Zki − Z ′ki | ≤ m+ 4, conditional on the event that such a bound held for the values
k1, . . . , ki−1. If this event does not occur, then Cuv and Cxy are not isomorphic and we
are done. If the event does occur, we reveal the vertices in B2 which have ki edges to
Γ2(x)\Γ1(y) and carry on. In order to ensure that the probability that |Zki−Z ′ki | ≤ m+4
is small, we will need to ensure we have not already revealed too many vertices. The
probability that an unrevealed vertex is equal to a given value ki changes as we reveal
that it is not equal to k1, . . . , ki−1, and we will also need to bound how much these
probabilities may change.
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Claim 4.6. For any ` > 0,

P(Zk1 + · · ·Zk` ≤ 3|B2|/4) = 1− o(n−4).

Proof. We first bound the probability that a given Yi is in {k1, . . . , k`}, or equivalently,
that Yi − εi ∈ {k1 − εi, . . . , k` − εi}. Since kj − εi ≥ dµe, this is clearly bounded above
by the probability that Yi − εi > dµe. The random variable Yi − εi follows a binomial
distribution and hence the median is bµc or dµe. This means

P(Yi ∈ {k1, . . . , k`}) ≤
1

2
.

In particular, the random variable Zk1 + · · · + Zk` is dominated by a binomial random
variable with |B1| = Θ(np) trials and success probability 1/2. Using Lemma 2.4, the
probability that such a random variable exceeds 2|B1|/3 is at most exp(−|B1|/63) =
o(n−4)). The result is now immediate since |B2| = (1 + o(1))|B1|.

Claim 4.7. For all i ∈ [`],

P
(
Y ′j = ki

)
≤ P

(
Y ′j = ki|Y ′j 6∈ {k1, . . . , ki−1}

)
≤ 2P

(
Y ′j = ki

)
.

Proof. The claim follows immediately from P
(
Y ′j ∈ {k1, . . . , k`}

)
≤ 1

2
and

P
(
Y ′j = k|Y ′j 6∈ {k1, . . . , ki−1}

)
=

P
(
Y ′j = k

)
1− P

(
Y ′j ∈ {k1, . . . , ki−1}

) .
We now assume that Zk1 + · · ·Zk` ≤ 3|B2|/4. Our goal is to apply Theorem 2.6 for

which we need to bound the probability that Y ′j = ki, given that Y ′j 6∈ {k1, . . . , ki−1}.
We use different approaches for different values of p, and we now split the proof into two
parts.

Claim 4.8. Suppose ω(n−2/3) = p ≤ n−16/35. There exist constants α, β > 0 such that,
for all j ∈ B2 and i ∈ [

√
pλ], we have

α√
µ′
≤P
(
Y ′j = ki

)
≤ β√

µ′
.

Proof. Note that P
(
Y ′j = ki

)
= P

(
Y ′j − ε′j = ki − ε′j

)
and that Y ′j−ε′j is a binomial random

variable whose variance tends to infinity. By Lemma 2.7 it is enough to show that there
is a constant M such that |ki − ε′j − µ′| ≤M

√
µ′ for all j ∈ B2 and ki. Note that∣∣ki − ε′j − µ′∣∣ ≤ |max{dµe, dµ′e} − µ′|+ |ε′j|+ i

≤ O(n5/4p9/4) + ε+
√
pλ.

As seen in the proof of Claim 4.4, we have λ ≥ n
2

min{1−e−1, np2/4} for large enough

n. In particular, there are constants a and b such that
√
µ′ ≥ min{a√np, b

√
n2p3}. Since

p ≤ n−16/35 ≤ n−3/7, we have n5/4p9/4 ≤ √np, and n5/4p9/4 ≤
√
n2p3 provided p ≤ n−1/3.

This shows O(n5/4p9/4) = O(
√
µ′). We also need to check that ε = O(

√
µ′). Note that√

µ′ is ω(1), so 154 = O(
√
µ′), and it is easy to see that (n2p3)1/4 = O(

√
µ′) as well.
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Suppose we are at stage i, and so we have already revealed the vertices with degrees
k1, . . . , ki−1 and are interested in the event that |Zki−Z ′ki | ≤ m+ 4. Since Zki is a known
constant (at this point), it suffices to bound the probability that Z ′ki takes one of the
2m+ 9 most likely values. The random variable Z ′ki is the sum of independent Bernoulli
random variables, and we may apply Theorem 2.6. By Claim 4.6 there are at least |B2|/4
trials and by Claim 4.7 the success probability of each trial is at least α/

√
µ′ and at most

2β/
√
µ′. Since µ′ → ∞ as n → ∞, we may assume 2β/

√
µ′ < 1/2. In particular, each

unrevealed j ∈ B2 is still more likely to not equal ki than to equal it. Applying Theorem
2.6 we have

sup
x

P
(
Z ′ki = x

)
≤ C√

α|B2|
4
√
µ′

= O(p1/4),

and
P
(
|Zki − Z ′ki| ≤ m+ 4

)
= O

(
mp1/4

)
.

Since p ≤ n−16/35 and m ≤ 12n1/9, we have mp1/4 = O(n−1/315). We may now take
` > 1260 = O(

√
pλ), in which case the probability that all ` steps succeed is O(n−`/315) =

o(n−4) as required.
We now consider the case where n−2/3+δ ≤ p ≤ n−2/3 log log n. Instead of applying a

local limit theorem as in Claim 4.8, we approximate Y ′j −ε′j by a Poisson random variable
and use this to bound the probability that Y ′j − ε′j equals ki.

Claim 4.9. Suppose n−2/3+δ ≤ p ≤ n−2/3 log log n. Then, for all i > 0, we have

(µ′)ki−ε exp(−µ′)
(ki − ε)!

+O
(
n2p4

)
≤ P

(
Y ′j = ki

)
≤ 1/4 +O

(
n2p4

)
.

Proof. By the Le Cam Theorem (see Theorem 2.8), the total variation distance between
Y ′j − ε′j and a Poisson random variable with mean µ′ is at most 2pµ′ = O(n2p4). Hence,

P
(
Y ′j = ki

)
= P

(
Y ′j − ε′j = ki − ε′j

)
=

(µ′)ki−ε
′
j exp(−µ′)

(ki − ε′j)!
+O

(
n2p4

)
.

The probability mass function of a Poisson distribution is decreasing above dµe, and so
the right hand side is a decreasing function of ki− ε′j. The lower bound now follows since
ε′j ≤ ε. For the upper bound, note that ki − ε′j ≥ dµ′e+ 1, and it suffices to bound

tdt+1e exp(−t)
dt+ 1e!

over all values of t > 0. This is bounded above by 1/4.

The random variable Zki is the sum of at least |B2|/4 independent Bernoulli random
variables, each with probability at least (µ′)ki−ε exp(−µ′)/(ki − ε)!+O(n2p4) and at most
1/2 +O(n2p4). Hence,

sup
t

P
(
Z ′ki = t

)
≤ C√

|B2|
4
· (µ′)ki−ε exp(−µ′)

(ki−ε)! +O(n3p5)
.
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Note that tt exp(−t) is bounded below by 1/e and that µ′ = O(n2p3) = O(log log(n)).
Hence, for large enough n,

|B2|
4
· (µ′)ki−ε exp(−µ′)

(ki − ε)!
=
|B2|

4
· (µ′)µ′ exp(−µ′) · (µ′)i+dµ

′e−µ′

(dµ′e+ i)!

≥ |B2|
4e
· n−3δ(i+1)

(O(log log(n)) + i+ 1)!

≥ |B2|
4e
· n−3δ(ε+i+1)

exp(O(log log(n) log log log(n))))

≥ |B2|
4e
· n−3δ(ε+i+2).

Using that |B2| ≥ np/2− C = Ω(n1/3−δ), we have

sup
t

P
(
Z ′ki = t

)
≤ C

Ω
(√

n1/3−δ−3δ(ε+i+2)
) .

Hence, the probability that all ` steps complete is at most

∏̀
i=1

(2m+ 4)C

Ω(
√
n1/3−δ−3δ(ε+i+2))

= O
(
n−(`/6−`δ(3ε+7)/2−3δ`(`+1)/4)

)
.

For any ` > 24, one can choose δ sufficiently small such that

`/6− `δ(3ε+ 7)/2− 3δ`(`+ 1)/4 > 4

which completes the proof.

5 Non-reconstructibility from 1-neighbourhoods and

2-neighbourhoods

In this section we prove Theorem 1.4 and Theorem 1.1. Both proofs are quite similar, but
differ in the technical details. We start in Section 5.1 with the proof of Theorem 1.1 since
it is slightly simpler, and then we move on to the proof of Theorem 1.4 in Section 5.2.

5.1 1-neighbourhoods

In this subsection we prove Theorem 1.1. When p = O
(

logn
n

)
and p = ω(n−3/2), we can

appeal directly to Lemma 3.7. It is therefore sufficient to show that if p ≤
√

logn
25n

and

p = ω(n−1), a random graph G ∈ G(n, p) is non-reconstructible with high probability.

Proof. Suppose that p = ω(n−1) and p ≤ c
√

logn
n

for some small constant c > 0 (which

we will later take to be 1/5). We will show that with high probability, there exist four
vertices u, v, x, y ∈ V (G) such that

18



1. the pairs xy, uv ∈ E(G), and xu, xv, yu, yx /∈ E(G),

2. all the degrees d(u), d(v), d(x), d(y) are different,

3. the degrees d(u), d(v), d(x), d(y) are at most (np)2/3 from np, and

4. the neighbourhoods Γ(u),Γ(v),Γ(x) and Γ(y) are all pairwise disjoint.

It is straightforward to see that this implies that the graph G is not reconstructible from
its 1-neighbourhoods. Indeed, the graph G and G′ = (G \ {xy, uv}) ∪ {xu, yv} have the
same collection of 1-neighbourhoods, but they are not isomorphic as the number of edges
in G′ between vertices of degree d(x) and d(y) is one less than in G.

It thus remains to prove that there exist four such vertices with high probability.
Let A = (a1, a2, a3, a4) ⊆ V (G) be an ordered tuple of four vertices, and let XA be the
indicator of the event that the vertices of A satisfy the conditions above with a1 = u, a2 =
v, a3 = x and a4 = y. Let X =

∑
A⊆V XA be the total number of such ‘good’ tuples.

Then E[X] =
∑

A⊆V E[XA] = 4!
(
n
4

)
P
(
X(1,2,3,4) = 1

)
. Let R1, R2, R3 and R4 be the events

that (1, 2, 3, 4) satisfies the conditions 1, 2, 3 and 4 respectively. The probability of the
event R1 is simply p2(1 − p)4. Given that R1 occurs, the degree of a vertex in A is
distributed like a Bin(n− 4, p) random variable plus one. The degree are independent so
the probability that two of the vertices have the same degree is at most 6 times greater
than the probability that two Bin(n − 4, p) random variables are equal, and this is o(1)
by Theorem 2.6. Further, an application of a Lemma 2.4 shows P(Rc

3 | R1) = o(1), and
hence, P(R2 ∩R3 | R1) = 1− o(1).

Now consider that the probability that four uniformly chosen sets from [n′] where
|n′ − n| ≤ 8 of size a = np+O((np)2/3) are pairwise disjoint is(

n′

a

)(
n′−a
a

)(
n′−2a
a

)(
n′−3a
a

)(
n′

a

)4 = (1− o(1))e−6a2/n = (1− o(1))e−6np2 . (5.1)

Given R1, R2 and R3 the probability that R4 occurs can be bounded above by the
probability that four uniformly chosen sets from V of size a = np− (np)2/3 are pairwise
disjoint, and bounded below by the probability that four uniformly chosen sets from V
of size a = np+ (np)2/3 are pairwise disjoint. By (5.1) this is (1− o(1))e−6np2 .

Combining the above we have P(XA) = (1− o(1))p2 exp(−6np2), and so

E[X] = (1 + o(1))n4p2 exp
(
−6np2

)
= Ω(n2−6c2). (5.2)

We next show that E[X2] ≤ (1 + o(1))E[X]2, so that Var(X) = o(E[X]2) and Cheby-
shev’s inequality completes the proof. Write

E[X2] =
∑

A1,A2⊆V

E[XA1XA2 ]

=
∑

A1,A2⊆V

P((XA1 = 1) ∧ (XA2 = 1))

=
4∑

k=0

∑
A1,A2⊆V,
|A1∩A2|=k

P((XA1 = 1) ∧ (XA2 = 1)).
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We first consider when A1 and A2 intersect (with |A1 ∪A2| = 8− k). If both A1 and
A2 satisfy condition 1, then there are at least 4− k/2 edges which must each be present.
This happens with probability at most p4−k/2. Hence, summing over the at most n8−k

choices for A1 and A2 for each k we have

4∑
k=1

∑
A1,A2⊆V,
|A1∩A2|=k

P((XA1 = 1) ∧ (XA2 = 1)) ≤
4∑

k=1

n8−kp4−k/2 ≤ 4n7p7/2.

Considering (5.2) we see that for small enough c, this sum is o(E[X]2). Indeed, n7p7/2 =
O(n15/2p4) while E[X]2 = Ω(n8−12c2p4), and it suffices to take c = 1/5.

It therefore suffices to show that the sum over the instances of A1 and A2 with no
intersection contributes at most (1 + o(1))E[X]2.

Now suppose that there is no intersection between A1 and A2. We loosen the require-
ments given by 1, 2, 3, and 4, by ignoring the edges between A1 and A2, and ignoring
condition 2. Condition 1 is unchanged, and condition 4 is weaker as we allow the neigh-
bourhoods to intersect in A1/A2. We modify condition 3 so that the degree of each vertex
is at most (np)2/3 + 4 away from np ignoring any edges between A1 and A2, and note
that this has a negligible difference on the condition. Let X ′A1,A2

be the indicator of the
event that both A1 and A2 pass these conditions which, since we have weakened the con-
ditions, dominates the event that XA1 = 1 and XA2 = 1. Repeating the calculation from

before shows that P
(
X ′A1,A2

= 1
)

= (1 + o(1))P
(
X(1,2,3,4) = 1

)2
. It then follows that∑

A1⊆V
∑

A2⊆V \A1
P((XA1 = 1) ∧ (XA2 = 1)) ≤

(∑
A⊆V (1 + o(1))P(XA = 1)

)2
= (1 +

o(1))E[X]2, as required.

5.2 2-neighbourhoods

In this subsection we prove Theorem 1.4. When p = O
(

logn
n

)
and p = ω(n−5/4), we can

appeal directly to Lemma 3.7, so we may it suffices to consider p where p ≤ 1
3

(
log1/3(n)

n

)3/4

and p = ω(n−1 log log n). We will show that for such p a random graph G ∈ G(n, p) is
not 2-reconstructible with high probability.

Proof. Suppose that p = ω(n−1 log log n) and p ≤ c
(

log1/3(n)
n

)3/4

for some small constant

c > 0 (which we will later take to be 1/3). For 2 vertices i ∼ j, define the ‘one-sided
2-neighbourhood’ of i with respect to ij by N ij

2 (i) = (Γ1(i) \ {j}) ∪ (Γ2(i) \ Γ1(j)). We
will show that with high probability, there exist four vertices u, v, x, y ∈ V (G) such that

1. the pairs xy, uv ∈ E(G), and xu, xv, yu, yx /∈ E(G),

2. d(x) = d(v) and d(y) = d(u),

3. the degrees d(u), d(v), d(x), d(y) are at most (np)2/3 from np,

4. the sizes of the second neighbourhoods: |Γ2(x)|, |Γ2(y)|, |Γ2(u)|, |Γ2(v)|, are all
different,
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5. the sizes of the second neighbourhoods |Γ2(x)|, |Γ2(y)|, |Γ2(u)|, |Γ2(v)| are at most
(n2p2)2/3 from n2p2,

6. the graphs induced by the first neighbourhoods are all empty:
G[Γ(x)], G[Γ(y)], G[Γ(u)], G[Γ(v)] = ∅, and

7. The ‘one-sided neighbourhoods’ Nxy
2 (x), Nxy

2 (y), Nuv
2 (v) and Nuv

2 (u) are disjoint.

It is straightforward to see that this implies that the graph G is not reconstructible
from its 2-neighbourhoods. Indeed, conditions 1, 2, 6 and 7 ensure the graphs G and
G′ = (G \ {xy, uv}) ∪ {xu, yv} have the same collection of 2-neighbourhoods, but the
number of edges ij where |Γ2(i)| = |Γ2(x)| and |Γ2(j)| = |Γ2(y)| (or the other way round)
is one less in G′.

It thus remains to prove that there exist four such vertices with high probability. Let
A = (a1, a2, a3, a4) ⊆ V (G), and let XA be the event that the vertices of A satisfy the
conditions above with a1 = u, a2 = v, a3 = x, a4 = y. Let X =

∑
A⊆V XA be the total

number of such ‘good’ pairs. Then E[X] =
∑

A⊆V E[XA] = 4!
(
n
4

)
P
(
X(1,2,3,4) = 1

)
. Let

R1, R2, R3, R4, R5, R6, and R7 be the events that (1, 2, 3, 4) satisfies the conditions 1, 2,
3, 4, 5, 6 and 7 respectively. The probability of the event R1 is simply p2(1−p)4. Further,
an application of Lemma 2.4 gives P(Rc

3 | R1) = o(1). Given that R1 occurs, the degree of
a vertex in A is distributed like a Bin(n− 4, p) random variable plus one. Given R1, the
degrees d(u), d(v), d(x) and d(y) are all independent so, since p = ω(n−1), an application
of Theorem 2.7 shows that the probability that R3 occurs (given R1) is Θ( 1

np
).

Now reveal the edges between u, v, x and y and the degrees d(u), d(v), d(x) and d(y),
and assume that R1, R2 and R3 hold. Then |Γ2(x)| is distributed like a Bin(n − 2 −
d(x)− d(y), 1− (1− p)d(x)−1) random variable plus d(y)− 1. Hence, the probability that
|Γ2(x)| = |Γ2(y)| (given R1, R2 and R3) is O(1/

√
np), and it follows that the probability

of R4 is 1 − o(1). Applying Lemma 2.4 also shows that the probability that R5 holds is
1− o(1).

We are left with R6 and R7. For them to hold, we first consider the probability that
G[Γ(x)], G[Γ(y)], G[Γ(u)], G[Γ(v)] are all disjoint and empty, and then the probability that
the second neighbourhoods are disjoint, and also disjoint from the first neighbourhoods.
For the first part, note that four uniformly chosen sets from [n′] where |n′ − n| ≤ 8 of
size a′ = np+O((np)2/3) are pairwise disjoint is(

n′

a′

)(
n′−a′
a′

)(
n′−2a′

a′

)(
n′−3a′

a′

)(
n′

a′

)4 = (1− o(1))e−6a′2/n = 1− o(1). (5.3)

Thus, similar to the proof of R4 in the previous subsection, given conditions 1 through
5 hold, the probability that they are disjoint can be bounded above by the probability
that four uniformly chosen sets from V of size a′ = np − (np)2/3 are pairwise disjoint,
and bounded below by the probability that four uniformly chosen sets from V of size
a′ = np + (np)2/3 are pairwise disjoint. By (5.3) this is (1− o(1)). Next, the probability
that they are all empty (given that they are disjoint, and given R1−R5) is bounded from

below by 1 − 4P(Bin(
(
d̂
2

)
, p) > 0), where d̂ = np + (np)2/3. Since E[Bin(

(
d̂
2

)
, p)] = o(1)

for our range of p, we obtain that the conditioned probability is (1 − o(1)) by Markov’s
inequality. Finally, to complete R7, note again that the probability that four uniformly
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chosen sets from [n′] where |n′ − n| = O(np) of size a = n2p2 +O((n2p2)2/3) are pairwise
disjoint is (

n′

a

)(
n′−a
a

)(
n′−2a
a

)(
n′−3a
a

)(
n′

a

)4 = (1− o(1))e−6a2/n = (1− o(1))e−6n3p4 . (5.4)

Thus, similar to the proof of R4 in the previous subsection, given R1−R5 and that the
first neighbourhoods are disjoint and empty, the probability that the second neighbour-
hoods are disjoint can be bounded above by the probability that four uniformly chosen
sets from V of size a = n2p2 − (n2p2)2/3 are pairwise disjoint, and bounded below by
the probability that four uniformly chosen sets from V of size a = n2p2 + (n2p2)2/3 are
pairwise disjoint. By (5.4) this is (1− o(1))e−6n3p4 .

Combining the above we have E[X] = Θ(1) · n3p exp(−6n3p4).
We next show that E[X2] ≤ (1 + o(1))E[X]2, so that Var(X) = o(E[X]2) and Cheby-

shev’s inequality completes the proof. As before,

E[X2] =
4∑

k=0

∑
A1,A2⊆V,
|A1∩A2|=k

P((XA1 = 1) ∧ (XA2 = 1)).

We first consider when A1 and A2 intersect (with |A1 ∪ A2| = 8 − k). For condition
1 to be satisfied for both A1 and A2, there are at least 4 − k/2 edges which must each
be present and this happens with probability at most p4−k/2. Summing over the at most
n8 − k choices for A1 and A2 for each k we have

4∑
k=1

∑
A1,A2⊆V,
|A1∩A2|=k

P((XA1 = 1) ∧ (XA2 = 1)) ≤ 4n7p7/2 ≤ 4c3/2n47/8 log3/8(n)p2.

We have that E[X]2 = Ω(n6−12c4p2), so that the sum over the A1 and A2 that intersect is
o(E[X]2) if c = 1/3 say. It therefore suffices to show that the sum over the instances of
A1 and A2 with no intersection contributes at most (1 + o(1))E[X]2.

Now suppose that there is no intersection between A1 and A2. As before, all the calcu-

lations are the same and so we have P((XA1 = 1) ∧ (XA2 = 1)) = (1 + o(1))P
(
X[4] = 1

)2
.

It then follows that∑
A1⊆V

∑
A2⊆V \A1

P((XA1 = 1) ∧ (XA2 = 1)) ≤
(∑
A⊆V

(1 + o(1))P(XA = 1)

)2

= (1 + o(1))E[X]2,

as required.

6 Properties of random graphs

The aim of this section is to prove the claims from Section 3, and by that completing the
proofs of Theorem 1.6 and Theorem 1.7.
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We prove several lemmas concerning the uniqueness of r-balls or the way they interact
in our graph. In Section 6.1 we show that for appropriate values of p, the 2-balls of a
random graph G ∈ G(n, p) are typically unique, proving Lemma 3.4. Then, in Section 6.2
we show that the 3-balls of vertices of large degree are all unique (again, for appropriate
values of p), proving Lemma 3.5. In Section 6.3 we consider when we can swap two
edges, keeping the set of 3-balls in the graph unchanged, proving Lemma 3.6, and thus
completing the proof for non constructibility from 3-neighbourhoods.

6.1 Uniqueness of 2-balls

In this section, we prove Lemma 3.4 which gives a region for p for which the 2-balls of a
random graph G ∈ G(n, p) are all distinct with high probability. We are inspired by the
argument of Gaudia and Moss, but take a little more care with the distribution of the
degrees of neighbourhoods. That is we show that in G(n, p), with high probability the

degree sequences
(

(d(w))w∈Γ(v)

)
v∈[n]

are distinct.

Proof of Lemma 3.4. Suppose

ζ2 log2(n)

n(log log n)3
≤ p ≤ n−2/3−ε

for some large ζ we fix later. Note that we can assume ε < 1/3 or there is nothing to
prove. We show that for each pair of vertices x, y, the event (d(w))w∈Γ(x) = (d(w))w∈Γ(y)

occurs with probability o(n−2). Taking a union bound over the x, y, shows that G(n, p)
has unique 2-neighbourhoods with high probability.

Fix vertices x, y. We first reveal the set A of vertices adjacent to at least one of x
and y excluding x and y themselves, i.e. A = (Γ(x) ∪ Γ(y)) \ {x, y}. So each vertex
u ∈ V \ {x, y} is in A independently with probability 1− (1− p)2. Note that we do not
yet reveal the precise set of edges between {x, y} and A, just that each vertex in A has
at least one neighbour in {x, y}.

Next we reveal the vertices in A adjacent to both x and y, and the edges inside A. That
is, for each vertex in A we connect it to both x and y with probability p2/(1− (1− p)2),
while each edge inside A is present independently with probability p.

We discount some tail events through the following claims.

Claim 6.1. Let R1 be the event {np/2 ≤ |A| ≤ 3np}. Then P(R1) = 1− o(n−2).

Claim 6.2. The following hold.

(i) Let R3 be the event {|Γ(x) ∩ Γ(y)| ≤ 6}. Then P(R3) = 1− o(n−2).

(ii) Let R4 be the event that there are at most 1/ε edges inside A. Then P(R4 | R1) =
1− o(n−2).

Note that independently each vertex in A which is not adjacent to both x and y, is
connected to x with probability 1/2 and otherwise it is connected to y (though we do not
yet reveal the adjacencies). Next we reveal every edge which is not incident with x or y.
For all k ∈ N such that |k − np| ≤ 1

4

√
np log(np) define Ak by

Ak = {z ∈ A : |Γ(z) \ (A ∪ {x, y})| = k}.
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That is Ak is the set of vertices which have k neighbours in the rest of the graph. We
would like to think of vertices in Ak as the vertices in A with degree exactly k+1, although
this is not quite correct since there are vertices which are connected to both x and y and
to other vertices in A. We will therefore only consider a subset of the possible values of
k for which the Ak definitely consist of the vertices in A of degree exactly k + 1. When
(d(w))w∈Γ(x) = (d(w))w∈Γ(y), then x and y must have the same number of the neighbours
of degree k+ 1, thus the vertices in Ak must be evenly split between being neighbours of
x and neighbours y, and this is unlikely to occur if Ak is “large”.

For each k, we say that Ak is large if |Ak| ≥ (np)1/4, and we say that Ak is small
otherwise. We claim that most Ak are large, and we will ignore the small Ak.

Claim 6.3. Let R2 be the event {#{small Ak} ≤ (np)1/4}. Then P(R2 | R1) = 1−o(n−2).

Suppose v ∈ Ak. Then v has degree at least k + 1, but it may be higher. The vertex
v might be a neighbour of both x and y which would increase the degree by 1 (over the
minimum). There are also at most 1/ε edges between vertices of A with high probability,
and they could all be incident to v, further increasing the degree by 1/ε. In particular,
the degree of v is k + 1 if none of these “bad” events occur, but could be as high as
k + 2 + 1/ε. However, we know that Ak consists of the vertices in A with degree exactly
k + 1 provided none of “bad” events occur for any of the vertices in Ak−1−1/ε, . . . , Ak.
This motivates the following definition of a good Ak.

We say that a large Ak is good if for all s such that |s− k| ≤ 2/ε the following hold:

1. Each z ∈ As is connected to at exactly one of x and y.

2. Each z ∈ As has no neighbours in A, i.e. Γ(z) ∩ A = ∅.

We otherwise say that Ak is bad. We wish to show that there are many good Ak.
Suppose that Ri holds for i = 1, . . . , 4. We claim we have few bad Ak. Indeed, we

have at most (np)1/4 small Ak. Each vertex in Γ(x) ∩ Γ(y) causes at most 3/ε Ak to not
satisfy condition (1), so all together the at most 6 vertices in Γ(x) ∩ Γ(y) cause at most
18/ε bad Ak. Similarly each edge inside A causes at most 6/ε (doubled for each end of
the edge) Ak to not satisfy condition (2), and all together the edges cause at most 6/ε2

bad Ak. Altogether we have O
(
(np)1/4

)
bad Ak, and so we have at least 1

3

√
np log(np)

good Ak for sufficiently large n.
Recall that when (d(w))w∈Γ(x) = (d(w))w∈Γ(y), for each good Ak we must have |Ak ∩

Γ(y)| = |Ak ∩ Γ(x)|. Each vertex in a good Ak is adjacent to x with probability 1/2 and
otherwise adjacent to y, and so, independently for each good Ak, the quantity |Ak∩Γ(x)|
is distributed like a Bin(|Ak|, 1/2) random variable. Thus by the law of total expectation
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and Lemma 2.7, there exists a C > 0 such that

P((d(w))w∈Γ(x) = (d(w))w∈Γ(y) | R1, . . . , R4)

= E
[
P((d(w))w∈Γ(x) = (d(w))w∈Γ(y) | (|Ak|)k, R1, . . . , R4

∣∣ R1, . . . , R4

]
= E

[
P(Bin(|Ak|, 1/2) = |Ak|/2 ∀ good Ak | (|Ak|)k, R1, . . . , R4)

∣∣ R1, . . . , R4

]
≤ E

[ ∏
Ak good

2C

|Ak|1/2
∣∣∣ R1, . . . , R4

]

≤ E

[(
2C

(np)1/8

)#{good Ak} ∣∣∣ R1, . . . , R4

]
.

Given that R1, . . . , R4 occur, we have at least 1
3

√
np log(np) good Ak. This means

P((d(w))w∈Γ(x) = (d(w))w∈Γ(y) | R1, . . . , R4) ≤
(

2C

(np)1/8

) 1
3

√
np log(np)

= exp
(
−Θ
(

(np)1/2 log3/2(np)
))
. (6.1)

Note from Claims 6.1, 6.2, and 6.3, P(R1, . . . , R4) = 1− o(n−2), and so it suffices to show

that (6.1) is o(n−2). Recall that p ≥ ζ2 log2(n)
n(log logn)3

, so that

P((d(w))w∈Γ(x) = (d(w))w∈Γ(y) | R1, . . . , R4) ≤ exp

(
−Θ

(
ζ

log n

(log log n)3/2
log3/2(log n)

))
= exp(−Θ(ζ log n)).

This is o(n−2) for sufficiently large ζ, and so taking β = ζ2 completes the proof.

It remains to prove the claims.

Proof of Claim 6.1. First, note that d(x)− 1 ≤ |A| ≤ d(x) + d(y), so it suffices to bound
d(x) and d(y). Using Lemma 2.4 we have

P(d(x)− 1 ≤ np/2) ≤ exp(−(1 + o(1))np/8) = o(n−2),

which proves the first inequality. For the second inequality, note that at least one of
d(x) and d(y) must be at least 3np/2, and we can again use Lemma 2.4 to bound this as
follows.

P(d(x) + d(y) ≥ 3np) ≤ 2P(d(x) ≥ 3np/2) ≤ exp(−np/10) = o(n−2).

Proof of Claim 6.2. (i) Note that independently each z 6= x, y is connected to both x
and y with probability p2. Thus, |Γ(x) ∩ Γ(y)| is distributed like a Bin(n − 2, p2)
random variable and

P(|Γ(x) ∩ Γ(y)| ≥ 6) ≤ n6p12 = O(n−2−12ε) = o(n−2).
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(ii) Conditional on R1, the number of edges inside A is stochastically dominated by a
Bin(6(np)2, p) random variable. Thus, we have

P(#{edges in A} ≥ 2/δ | R1) ≤ P
(
Bin
(
6(np)2, p

)
≥ 2/δ

)
≤ e(6n−3ε)1ε

= o
(
n−2
)
.

Proof of Claim 6.3. For each z ∈ A, define d′(z) = |Γ(z) \ (A ∪ {x, y})|. Conditionally
given |A|, the d′(z) are each independently distributed like a Bin(n− (|A|+2), p) random
variable. Hence, for r ∈ N such that |r − np| ≤ 1

4

√
np log(np) and m ∈ [np/2, 3np],

Theorem 2.7 gives.

P(d′(z) = r | |A| = m) = P(Bin(n− (|A|+ 2), p) = r)

≥ (1 + o(1))
1√

2πnp
exp

(
−np log(np)/16

2np+O(np2)

)
≥ (1 + o(1))

1√
2πnp

exp(−(1 + o(1)) log(np)/32)

=
1√
2π

(np)−
1+o(1)

32
− 1

2

For large enough n, this is certainly at least (np)−5/8.
Given |A| = m ∈ [np/2, 3np], each |Ar| stochastically dominates a Bin

(
np/2, (np)−5/8

)
random variable. Hence, we can use Lemma 2.4 to bound the probability that a single
|Ar| is small given |A| = m as follows.

P(|Ar| is small | |A| = m) ≤ P
(
Bin
(
np/2, (np)−5/8

)
≤ (np)1/4

)
≤ exp

(
−(1− (np)−1/8)2(np)3/8

4

)

Removing at most
√
np vertices from A makes a negligible difference to the above calcu-

lation and the probability that a given Ar is small is at most exp
(
−(np)3/8/8

)
for large

enough n. Hence, the probability that a particular set of k ≥ (np)1/4 sets Ar1 , . . . , Ark
are all small is at most exp

(
−(np)5/8/8

)
. There are at most (

√
np log(np))(np)1/4 choices

for such sets, so the probability that there are lots of small Ar is

P(#{small Ar} ≥ (np)1/4 | |A| = m) ≤
(√

np log(np)
)(np)1/4

exp
(
−(np)5/8/8

)
= exp

(
log
(√

np log(np)
)

(np)1/4 − (np)5/8

8

)
= exp

(
−Θ
(
(np)5/8

))
= o
(
n−2
)
.

This is true for every choice of m ∈ [np/2, 3np], and so we have shown Claim 6.3.
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yx

Figure 2: An edge uv with examples of vertices failing the conditions 2, 3 and 4 shown
in red.

6.2 Uniqueness of 3-balls

We next turn to the proof of Claim 3.5. Recall that log2/3(n)
n

≤ p ≤ log2(n)
n

, and we aim to
show that with high probability the 3-balls around vertices with degree at least np/2 are
unique. This is done by considering the degree sequences of the neighbourhoods of the
neighbours around a vertex. That is, for a vertex x we consider the collection of multisets
of the form {d(w) : w ∈ Γ(u) \ {x}}, for each neighbour u of x. Given two vertices x and
y, it would be nice to appeal to a level of independence and assume the degrees of vertices
at distance 2 from x or y are i.i.d. binomial random variables. Therefore, our first step
in the proof is to restrict ourselves to parts of the 2-balls around x and y which do
not interact or overlap, so that we may assume this independence. We then bound the
probability of two multisets of i.i.d. binomial random variables being equal. We then
pull everything together and appeal to a union bound over pairs of vertices x and y.

Proof of Claim 3.5. Fix two vertices x, y, and suppose that d = d(x) = d(y). Denote
their neighbourhoods by {u1, . . . , ud} and {v1, . . . , vd} respectively, and for i ∈ [d], let
dxi be the multiset of the degrees of the neighbours of ui (except x). Similarly, define
dyi to be the multiset of the degrees of the neighbours of vi (except y). That is, dxi :=
{d(w) : w ∈ Γ(ui) \ {x}} and dyi := {d(w) : w ∈ Γ(vi) \ {y}}. Let Dx = {dxi : i ∈ [d]},
and Dy = {dyi : i ∈ [d]}. Clearly, if the 3-balls around x and y are isomorphic, then
Dx = Dy as multisets, and we will show that the probability that this happens is o(n−2).

We say that a vertex v ∈ Γ(x)∪Γ(y) is bad if any of the following hold, and otherwise
we say that it is good.

1. v ∈ {x, y},

2. v is adjacent to both x and y,

3. v is adjacent to a vertex in (Γ(x) ∪ Γ(y)) \ {x, y}

4. there is a neighbour of v adjacent to a vertex at distance at most 2 from x or y and
which is not v,

5. the degree of v is less than np/2.

We first claim that, with probability 1−o(n−2), there are at most 2 log1/2(n) bad ver-
tices. Note that we will only be interested in applying this when d ≥ np/2 ≥ log2/3(n)/2,
and so the proportion of bad vertices tends to 0.

Claim 6.4. For any two vertices x and y, the number of bad vertices in Γ(x) and Γ(y)
is at most 2 log1/2(n) with probability 1− o(n−2).
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We now reveal the 2-balls around x and y. If d(x) 6= d(y), then the 3-balls are not
isomorphic and we are done, and if d = d(x) = d(y) is less than np/2, there is nothing
to prove. From the 2-balls, we can also check which of the vertices in Γ(x) ∪ Γ(y) are
bad, and we assume that there are at most 2 log1/2(n) of them. The degree of a vertex
is dominated by a Bin(n, log2(n)/n) vertex so, by Lemma 2.4, we may also assume that
d ≤ 2 log2(n) and that the union of the 2-balls around x and y contains at most 9 log4(n)
vertices. If w is a neighbour of a good vertex (and not x or y), the degree of w minus
one is a binomial random variable, and moreover, the degrees for such vertices are i.i.d.
random variables. Hence, if ui is a good vertex, the set dxi consists of d i.i.d. binomial
random variables with at least n−9 log4(n) trials and success probability p. The following
claim shows that the probability that dxi = dyj is small (for i and j such that ui and vj
are both good).

Claim 6.5. Let A1, . . . , Ad and B1, . . . , Bd be i.i.d. binomial random variables with N ≥
n −
√
n trials and success probability p ≤ 1/2, and suppose that d ≥ np/2. If np → ∞,

then the probability that A = {A1, . . . , Ad} and B = {B1, . . . , Bd} are equal as multisets
is at most exp

(
−Ω(
√
np log(np))

)
.

If Dx and Dy are equal as multisets, then there is a permutation σ such that dxi = dyσ(i)

for all i ∈ [d]. We show that the probability this holds for any particular choice of σ is
o(1/d!), and the union bound over the number of permutations and the pairs of vertices x
and y completes the proof. Let π be a permutation of [d], and consider each i = 1, . . . , d
in turn. If at least one of ui or vπ(i) is bad, we continue onto the next i. If neither
ui nor vπ(i) is bad, then Claim 6.5 shows that the probability that dxi = dyπ(i) is at

most exp
(
−Ω(
√
np log(np))

)
. Since we have assumed that there are at most 2 log1/2(n)

vertices which are bad, we skip at most 4 log1/2(n) choices for i. Hence, the probability
that dxi = dyπ(i) for all i ∈ [d] is at most exp

(
−Ω(d

√
np log(np))

)
. By the union bound,

the probability that Dx and Dy are equal is at most

P(Dx = Dy) = o(n−2) + exp(−Ω(d
√
np log(np)) + d log d)

= o(n−2) + exp
(
−Ω(d log1/3(n) log d) + d log d

)
= o(n−2) + exp

(
−Ω(d log1/3(n) log d)

)
= o(n−2) + exp(−Ω(log(n) log log(n)))

= o(n−2).

Finally, taking a union bound over the vertices x and y completes the proof.

We now prove the two claims made in the proof above. We start by bounding the
number of vertices that fail each of the conditions in the definition of a good vertex.

Proof of Claim 6.4. We will bound the number of vertices that fail each of the conditions
in the definition of being good. Clearly at most two vertices fail the first condition.
The number of vertices which fail the second condition is given by a Bin(n − 2, p2)
random variable, which is dominated by a Bin(n, log4(n)/n2) random variable. Hence,
using Lemma 2.5, the probability there are at least three vertices which fail the second
condition is at most e log12(n)/n3 = o(n−2).
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Consider the vertices in Γ(x)∪Γ(y) which are not one of x or y. Using Lemma 2.4, we
may assume that there is N ≤ 4 log2(n) pf them. At this point, we have only revealed the
edges incident to x and y, and so each edge uv between two of these vertices is present
independently with probability p. Hence, the number of such edges is at most 3 with
probability o(n−2), and at most six vertices fail the third condition.

We split the fourth condition into two parts. First, we consider the number of v that
fail due to one of their neighbours being adjacent to another vertex in Γ(x) ∪ Γ(y). A
vertex z 6∈ {x, y} ∪ Γ(x)∪ Γ(y) has a binomial number of neighbours in Γ(x)∪ Γ(y) with
at most 4 log2(n) trials and success probability at most log2(n)/n. Hence, the probability
that z has less than 4 such neighbours is 1−o(n−3), and with probability 1−o(n−2), there
is no choice for z with at least 4 neighbours. The probability that a z 6∈ {x, y}∪Γ(x)∪Γ(y)
has at least two neighbours in Γ(x) ∪ Γ(y) is at most e(4 log2(n)p)2, and so the number
of such z is at dominated by a Bin(n, 16 log8(n)/n2) random variable. In particular,
with probability 1 − o(n−2), there are at most 2 vertices adjacent to least 2 vertices in
Γ(x) ∪ Γ(y), and they are adjacent to at most 3 vertices. Hence, at most six vertices fail
during the first part of the fourth condition.

Let W be the set of v ∈ Γ(x) ∪ Γ(y) which have not already failed. We can reveal
the set W by checking the edges from x and y and from Γ(x) and Γ(y), and note that
we may assume that |Γ(W ) \ {x, y}| ≤ 8 log4(n) as this happens with probability 1 −
o(n−2). Hence, the number of edges between vertices in Γ(W ) \ {x, y} is dominated by
a Bin(64 log8(n), log2(n)/n) random variable. In particular, there are at most two edges
with probability 1 − o(n−2). Each of these can rule out at most two v ∈ W . Hence, at
most a further four v fail here.

Let W ′ = (Γ(x) ∪ Γ(y)) \ {x, y}. We now consider the number of vertices in W ′

which have degree less than np/2. Such a vertex must have less than np/2 neighbours in
V \ ({x, y} ∪Γ(x)∪Γ(y)). We assume that we have revealed the edges from x and y and
the edges between vertices in Γ(x)∪Γ(y), but no other edges. We may assume that there
are at most 4 log2(n) vertices in Γ(x) ∪ Γ(y). For a given vertex in v ∈ W ′, the number
of neighbours in V \ ({x, y} ∪ Γ(x) ∪ Γ(y)) dominates a binomial random variable with
n − 4 log2(n) − 2 trials and success probability p. Hence, the probability that it is less
than np/2 is at most

exp

(
−n2p

8(n− 4 log2(n)− 2)

)
≤ exp(−np/16)

for large enough n. Since each vertex v ∈ W ′ satisfies this independently, the number
of vertices in W which have degree less than np/2 is dominated by a binomial random
variable with 4 log2(n) trials and success probability exp(−np/16). Hence, the probability
there are more than log1/2(n) such vertices is at most

e
(

4 log2(n) exp
(
− log2/3(n)

16

))log1/2(n)

= exp
(

log1/2(n)
(

Θ(log log(n))−Θ(log2/3(n))
))
,

which is o(n−2). Hence, the number of vertices which are bad is at most 2 + 2 + 6 + 4 +
log1/2(n) with probability o(n−2) as required.

We now prove Claim 6.5. The general strategy here is similar to the approach used in
Lemma 4.2 when we wanted to show that the probability that two multisets were equal
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was small: we count the number of Ai and Bi which are equal to k for
√
np values of

k close to the mean. The probability that these two quantities are equal is O(1/
√
dnp),

and this holds even after we have revealed this for
√
np choices of k. However, while

the general strategy is similar, this time it is much simpler as the Ai and Bi are i.i.d.
binomial random variables.

Proof of Claim 6.5. Let Zk be the number of A1, . . . , Ad which are equal to k and similarly
define Z ′k to be the number of B1, . . . , Bd. Let ` =

⌈√
np
⌉
− 1, and define ki = dnpe + i

for i ∈ [`]. By Fact 2.3, we have

P(B1 ∈ {k1, . . . , k`}) ≤ P(B1 ≥ dNpe) ≤ 1/2.

Hence,

P
(
Z ′k1 + · · ·+ Z ′k` ≤ d/4

)
≤ P(Bin(d, 1/2) ≥ 3d/4) ≤ exp(−d/18).

Suppose this is the case and reveal the values Z ′ki , which we call our target values. We
will iteratively reveal the Aj which are equal to ki, and check if there are Z ′ki of them.
Suppose we are about to reveal the Aj equal to ki, so we have already revealed the values
Zk1 , . . . , Zki−1

and they equal Z ′k1 , . . . , Z
′
ki−1

. We will show that the probability that Zki
is equal to Z ′ki is at most O(1/np). Suppose that Aj has not been revealed, so we know
that Aj is not equal to k1, . . . , ki−1. We have

|ki −Np| ≤ |ki − np|+ |Np− np| ≤ i+ 1 +
√
np ≤ 2

√
np

for large n, and so by Lemma 2.7, there are constants c and C such that

c√
Np(1− p)

< P(Aj = ki|Aj 6∈ {k1, . . . , ki−1}) <
2C√

Np(1− p)
.

Hence, the number of unrevealed Aj which are equal to ki is a binomial random variable
with at least d/4 trials and success probability Θ(1/

√
Np). In particular,

P
(
Zki = Z ′ki

)
≤ sup

x
P(Zki = x) = O

(
1√
dNp

)
= O

(
1√
dnp

)
.

If A and B are equal as multisets, then either Z ′k1 + · · · + Z ′k` > d/4 or all of the steps

pass which happens with probability exp
(
−Ω(
√
np log(np))

)
.

6.3 The set of 3-balls after swapping edges

In this section we prove Lemma 3.6, that is, we show that there is a constant α > 0 such

that if log2/3(n)
n

≤ p ≤ α log2(n)
n(log logn)3

, a random graph G ∈ G(n, p) is not 3-reconstructible
with high probability. The main idea of the proof will be to show that, with high prob-
ability, there exist two edges xy, uv in G such that by deleting these edges and adding
xv, yu we obtain a graph G′ which is not isomorphic to the original one, but has the same
collection of 3-balls. Lemma 3.5 shows that with high probability the 3-balls around
vertices of “large” degree are all distinct so, if u, v, x and y all have large degree and the
swap preserves 3-balls, the graphs G and G′ are not isomorphic. To find the edges to
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swap we consider the structures Huv defined as follows. For an edge uv, let Huv be the
subgraph G[Γ≤2(u) ∪ Γ≤2(v)] induced by the vertices at distance at most 2 from u or
v, and distinguish the edge uv. We will only consider the Huv for “good” edges whose
5-balls are trees and where all the vertices in Huv have “typical” degrees. There are many
good edges but not that many isomorphism classes for the Huv, and so, by the pigeonhole
principle, there must be two edges uv and xy with Huv ' Hxy. This is not quite enough
to guarantee that the switch does not change the 3-balls by introducing extra edges and
we will also require the edges to be far apart.

Proof of Claim 3.6. Let G ∈ G(n, p) where log2/3(n)
n

≤ p ≤ α log2(n)
n(log logn)3

. We will show
there exist the vertices u, v, x, y as claimed using a pigeonhole argument over the Huv

of good edges. We say that an edge uv is good if G[Γ≤5(u) ∪ Γ≤5(v)] is a tree and
|d(z)− (n− 1)p| < 10

√
np log(np) for every z ∈ Γ≤2(u) ∪ Γ≤2(v). We will need the

following claim which bounds the number of pigeonholes.

Claim 6.6. The number of isomorphism classes for the Huv of the good edges is at most

np log(np) exp
(

Θ
(

(np)1/2 log3/2(np)
))
.

Having bounded the number of pigeonholes we have, we now consider the number of
pigeons, or the number of good edges uv in G. The following claim shows that there are
at least n2p/8 good edges with high probability.

Claim 6.7. With probability 1− o(1), the graph G satisfies the following:

(i) The number of edges of G contained in a cycle of length at most 12 is at most
log24(n).

(ii) The maximum degree of G is at most log2(n).

(iii) The number of vertices z with degree d(z) such that |d(z)−(n−1)p| > 10
√
np log(np)

is at most n−31p−32.

(iv) G contains at least n2p/4 edges.

(v) The 3-balls of G are all distinct.

Let us denote the subgraph of G induced by the vertices at distance at most 5 from
u or v by N5(u, v), i.e. N5(u, v) = G[Γ≤5(u) ∪ Γ≤5(v)]. We note that if N5(u, v) is
not a tree, then it contains a cycle of length at most 12, and we will count only the
good edges for which N5(u, v) does not contain an edge which is contained in a cycle
of length at most 12. Such an edge is good if it also satisfies the degree condition that
|d(z) − (n − 1)p| ≤ 10

√
np log(np) for every z ∈ V (Huv). Assume that the graph G

satisfies the conditions of the claim above. Then the second condition implies that there
are at most log2k(n) vertices in the kth neighbourhood of a vertex v and hence v is in
at most log2(n)(log4(n) + log2(n) + 1) ≤ 2 log6(n) of the Huv. Hence, a vertex z with
|d(z)−(n−1)p| > 10

√
np log(np) cause at most 2 log6(n) of the edges to be bad. Similarly,

each vertex is in at most of the 2 log12(n) of the N5(u, v) and an edge in a cycle of length
at most 12 causes at most 4 log12(n) of the edges to be bad.
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w

vu

yx

Figure 3: The 3-ball around a vertex w in the neighbourhood of v in G′ is shown in blue.
The assumption that uv and xy does not prevent the edge shown in red being there, but
this edge would create a path from v to x of length 6 in G.

Using the (i) and (iii), the number of bad edges for our range of p is at most

2 log6(n) · log24(n) + 4 log12(n) · n−31p−32 ≤ 2 log30(n) + 4n log−8(n) ≤ n

for large enough n. From the last condition G has at least n2p/4 ≥ n log2/3(n)/4 edges
and (crudely) there at least n2p/8 good Huv for large enough n.

We now use Claim 6.6 to finish the proof. There must be a pigeonhole with at least

n2p

8np log(np) exp(Θ((np)1/2 log3/2(np)))
= exp(log n− log log(np)−Θ((np)1/2 log3/2(np)))

pigeons. That is, there is some good structure J which appears as Huv for at least this

many edges uv. Noting that p ≤ β log2 n
n(log logn)3

, this is at least

exp
(
(1−

√
8β) log(n) +O(log(n)/(log log(n))3/2)

)
.

Suppose that Huv ' J . There are at most 2(log2(n))6 vertices at distance at most 6
from any vertex w, and there are at most 4 log12(n) vertices at distance at most 6 from
u or v. Hence, there are at most 4 log14(n) edges where at least one vertex is at distance
at most 6 from u or v. In particular, if β is sufficiently small

exp
(
(1−

√
8β) log(n) +O(log(n)/(log log(n))3/2

)
≥ 4 log14(n) + 1

and there is a good edge xy such that Hxy ' J and both x and y are at distance at least
7 from both u and v. Fix an isomorphism from Huv to Hxy and suppose without loss of
generality that u is mapped to x. Let G′ = (G \ {uv, xy}) ∪ {uy, vx}. We claim that G′

has the same collection of 3-balls as G and that G′ is not isomorphic to G.
Note that the 3-ball of a vertex w is clearly unchanged if w is not in the 2-ball of one

of u, v, x or y, so suppose this is the case. Since N5(u, v) and N5(x, y) are trees, the
3-ball of w in G is a tree T . As Huv ' Hxy (with u mapping to x), the 3-ball of u in G′

is the same tree T except there may possibly be some extra edges (see Figure 3 for an
example). However, these extra edges must create a cycle of length at most 7 which uses
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one of the new edges, say vx. But this means v and x are at distance at most 6, which
contradicts the choice of xy.

The graphs G and G′ cannot be isomorphic as every 3-ball in G is unique and G
contains an edge between a vertex with 3-ball N3(u) and a vertex with 3-ball N3(v). The
graph G′ has exactly the same collection of 3-balls, but there is no such edge and G′ is
not isomorphic to G.

It remains to prove our technical claims.

Proof of Claim 6.6. When uv is a good edge, the structure Huv is a tree with a distin-
guished edge where each vertex z ∈ V (Huv) satisfies |d(z)− (n− 1)p| < 10

√
np log(np).

It suffices to bound the number of different options for d(u), d(v) and the multisets {d(z) :
z ∈ Γ(u)\v} and {d(z) : z ∈ Γ(v)\u}. The condition |d(z)− (n− 1)p| < 10

√
np log(np)

means that all the degrees are one of N =
⌊
20
√
np log(np)

⌋
options. Hence, the multiset

set {d(z) : z ∈ Γ(u) \ v} is a multiset of d(u)− 1 entries spread across at most N options,
and so there are at most(

d(u) +N − 2

N − 1

)
≤ (d(u) +N)N

≤
(
np+ 30

√
np log(np)

)20
√
np log(np)

= exp
(

Θ((np)1/2 log3/2(np))
)
.

The same is true for the multiset {d(z) : z ∈ Γ(v) \ u}, so there are at most(
20
√
np log(np)

)2

exp
(

Θ(
√
np log3/2(np))

)2

= np log(np) exp
(

Θ
(

(np)1/2 log3/2(np)
))

as required.

Proof of Claim 6.7. Let G ∈ G(n, p). We show that each of the condition holds with
probability 1− o(1), and the union bound over the five events completes the proof.

(i) For each k ∈ {3, . . . , 12}, let Ck be the number of cycles of length k in G. Then
E[Ck] ≤ nkpk. For the range of p that we consider we have np = o

(
log2(n)

)
and so

the expected number of edges in cycles of length at most 12 is bounded by

6∑
k=3

k E[Ck] ≤
12∑
k=3

knkpk = o
(
log24(n)

)
.

The claim now follows from Markov’s Inequality.

(ii) Note that the degree d(z) of a vertex z is distributed like a Bin(n − 1, p) random
variable. For large enough n, we have p ≤ log2(n)/(2n−2) and so Lemma 2.4 gives

P(d(z) ≥ log2(n)) = P
(

Bin
(
n− 1, log2(n)

2n−2

)
≥ log2(n)

)
≤ exp

(
−2 log2(n)

3

)
= o(n−1).

The claim now follows from a union bound.
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(iii) Again applying Lemma 2.4 we get

P
(
|d(x)− (n− 1)p| > 10

√
np log(np)

)
≤ 2 exp

(
−100 log(np)

3

)
≤ 2(np)−33.

Thus, the expected number of vertices z with |d(z)− (n− 1)p| > 10
√
np log(np) is

bounded by 2n−32p−33. We are then done by Markov’s Inequality since np→∞.

(iv) The number of edges in G is distributed like a Bin
((
n
2

)
, p
)

random variable, so the
result follows from Lemma 2.4.

(v) This follows from Lemma 3.5.
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arXiv preprint arXiv:2108.09636, 2021.

[20] S. Janson, T.  Luczak, and A. Rucinski. Random graphs. Wiley-Interscience Series
in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000.

[21] P. J. Kelly. On isometric transformations. PhD thesis, University of Wisconsin,
1942.

[22] P. J. Kelly. A congruence theorem for trees. Pacific Journal of Mathematics, 7:961–
968, 1957.

[23] A. V. Kostochka, M. Nahvi, D. B. West, and D. Zirlin. 3-regular graphs are 2-
reconstructible. European Journal of Combinatorics, 91:Paper No. 103216, 10, 2021.

[24] J. Lauri and R. Scapellato. Topics in graph automorphisms and reconstruction, vol-
ume 432 of London Mathematical Society Lecture Note Series. Cambridge University
Press, Cambridge, second edition, 2016.

[25] L. Le Cam. An approximation theorem for the Poisson binomial distribution. Pacific
Journal of Mathematics, 10:1181–1197, 1960.

[26] A. Martinsson. Shotgun edge assembly of random jigsaw puzzles. arXiv preprint
arXiv:1605.07151, 2016.

[27] A. Martinsson. A linear threshold for uniqueness of solutions to random jigsaw
puzzles. Combinatorics, Probability and Computing, 28(2):287–302, 2019.

35



[28] M. Mitzenmacher and E. Upfal. Probability and computing. Cambridge University
Press, Cambridge, second edition, 2017. Randomization and probabilistic techniques
in algorithms and data analysis.

[29] R. Molina. Correction of a proof on the ally-reconstruction number of a disconnected
graph. Correction to: “The ally-reconstruction number of a disconnected graph”
[Ars Combin. 28 (1989), 123–127; MR1039138 (90m:05094)] by W. J. Myrvold. Ars
Combinatoria, 40:59–64, 1995.

[30] E. Mossel and N. Ross. Shotgun assembly of labeled graphs. IEEE Transactions on
Network Science and Engineering, 6(2):145–157, 2019.

[31] E. Mossel and N. Sun. Shotgun assembly of random regular graphs. arXiv preprint
arXiv:1512.08473, 2015.

[32] A. S. Motahari, G. Bresler, and D. N. C. Tse. Information theory of DNA shot-
gun sequencing. Institute of Electrical and Electronics Engineers. Transactions on
Information Theory, 59(10):6273–6289, 2013.

[33] V. Müller. Probabilistic reconstruction from subgraphs. Commentationes Mathe-
maticae Universitatis Carolinae, 17(4):709–719, 1976.

[34] W. Myrvold. The ally-reconstruction number of a disconnected graph. Ars Combi-
natoria, 28:123–127, 1989.

[35] W. Myrvold. The ally-reconstruction number of a tree with five or more vertices is
three. Journal of Graph Theory, 14(2):149–166, 1990.

[36] W. J. Myrvold. Ally and adversary reconstruction problems. PhD thesis, University
of Waterloo, 1988.

[37] B. Narayanan and C. Yap. Reconstructing random pictures. arXiv preprint
arXiv:2210.09410, 2022.

[38] R. Nenadov, P. Pfister, and A. Steger. Unique reconstruction threshold for random
jigsaw puzzles. Chicago Journal of Theoretical Computer Science, pages Art. 2, 16,
2017.

[39] M. Przykucki, A. Roberts, and A. Scott. Shotgun reconstruction in the hypercube.
Random Structures & Algorithms, 60(1):117–150, 2022.

[40] B. A. Rogozin. An estimate for concentration functions. Theory of Probability & Its
Applications, 6(1):94–97, 1961.

[41] D. Soudry, S. Keshri, P. Stinson, M.-h. Oh, G. Iyengar, and L. Paninski. Efficient
“shotgun” inference of neural connectivity from highly sub-sampled activity data.
PLoS computational biology, 11(10):e1004464, 2015.

[42] H. Spinoza and D. B. West. Reconstruction from the deck of k-vertex induced
subgraphs. Journal of Graph Theory, 90(4):497–522, 2019.

36



[43] J. M. Steele. Le Cam’s inequality and Poisson approximations. American Mathe-
matical Monthly, 101(1):48–54, 1994.

[44] S. M. Ulam. A collection of mathematical problems. Interscience Tracts in Pure and
Applied Mathematics, no. 8. Interscience Publishers, New York-London, 1960.

37


	Introduction
	Discussion and definitions
	Probability prelims

	Reconstruction from r-neighbourhoods, r >= 3
	Reconstruction from 2-neighbourhoods
	Non-reconstructibility from 1-neighbourhoods and 2-neighbourhoods
	1-neighbourhoods
	2-neighbourhoods

	Properties of random graphs
	Uniqueness of 2-balls
	Uniqueness of 3-balls
	The set of 3-balls after swapping edges


